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Three Dimensional Sheaf of Ultrasound Planes
Reconstruction (SOUPR) of Ablated Volumes

Atul Ingle∗, Student Member, IEEE,and Tomy Varghese,Senior Member, IEEE

Abstract—This paper presents an algorithm for three
dimensional reconstruction of tumor ablations using ul-
trasound shear wave imaging with electrode vibration
elastography. Radiofrequency ultrasound data frames are
acquired over imaging planes that form a subset of a sheaf
of planes sharing a common axis of intersection. Shear
wave velocity is estimated separately on each imaging plane
using a piecewise linear function fitting technique with a
fast optimization routine. An interpolation algorithm the n
computes velocity maps on a fine grid over a set of C-
planes that are perpendicular to the axis of the sheaf. A
full three dimensional rendering of the ablation can then
be created from this stack of C-planes; hence the name
“Sheaf Of Ultrasound Planes Reconstruction” or SOUPR.
The algorithm is evaluated through numerical simulations
and also using data acquired from a tissue mimicking
phantom. Reconstruction quality is gauged using contrast
and contrast-to-noise ratio measurements and changes in
quality from using increasing number of planes in the
sheaf are quantified. The highest contrast of 5dB is seen
between the stiffest and softest regions of the phantom.
Under certain idealizing assumptions on the true shape of
the ablation, good reconstruction quality while maintaining
fast processing rate can be obtained with as few as 6
imaging planes suggesting that the method is suited for
parsimonious data acquisitions with very few sparsely
chosen imaging planes.

Index Terms—ablation, shear stiffness, sheaf, 3D recon-
struction, ultrasound, shear wave elastography, electrode
vibration

I. INTRODUCTION

L IVER cancer is one of the most common forms of
cancer in the world with a very high mortality index

(mortality to incidence ratio of 93% (2008)) making it
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one of the leading cause of cancer related deaths [1].
Tumor ablation therapy is a minimally invasive proce-
dure that can be used to treat smaller localized tumors.
Radiofrequency (RF) and microwave ablation procedures
involve insertion of an ablation needle into the affected
area and inducing localized heating to thermally coagu-
late the cancerous cells. Accurate real-time visualization
of the ablated region has clinical value because it can
provide immediate feedback to the clinician about the
extent of ablation. Accurate control of the ablation
volume is crucial for preventing recurrence of tumors,
arising from the presence of untreated cancerous cells.

The problem of boundary delineation for tumor vi-
sualization has been an important signal processing
issue in various medical imaging modalities. Since liver
tumors may not have sufficient echogenic contrastvis-
á-vis healthy liver tissue [2], [3], [4], visualizing them
on a conventional B-mode image is challenging. Ultra-
sound elastography attempts to derive local mechanical
properties of tissue from estimated displacements [5]. It
has potential to augment traditional B-scans and assist
the clinician in delineating ablation boundaries more
accurately. Unlike X-ray computed tomography (CT)
or magnetic resonance imaging (MRI), traditional ultra-
sound elastography has been limited to single imaging
planes, over which strain is estimated, and the Young’s
modulus (stiffness) is reconstructed by solving the in-
verse problem [6], [7], [8], [9]. Shear wave velocity
(SWV) and shear modulus can also be estimated for
these imaging planes [10]. The accuracy of such methods
is limited by the underlying assumptions about tissue
elasticity and other geometric and boundary effects.
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Two dimensional (2D) ultrasound has been widely
applied to tissue stiffness measurements in ablation
monitoring procedures in the liver [11], [12], [13], [14].
The ablation needle appears hyperechoic in a traditional
B-mode scan, and hence provides a way to guide the
needle placement in the tumor and for aligning the image
plane when monitoring ablations. Multiple frames of
ultrasound echo data acquired after ablation can be used
for both quasistatic and dynamic ultrasound elastography
to reveal stiffness variations in the imaged plane. Qua-
sistatic imaging [6], [15] can be performed by manually
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perturbing the medium using the ablation needle and
displaying the rate of change of displacements with
depth (strain). Prior information about the shape of the
ablated area can be harnessed to improve boundary
visibility in the strain image [16]. Alternatively, dynamic
elastography methods can also be used to visualize
tissue mechanical properties. Acoustic radiation force
imaging (ARFI) [17], [18] involves application of high
frequency focussed ultrasound pulses to create localized
displacement in liver tissue. These displacements can
be tracked using radiofrequency ultrasound echoes and
generate an ARFI image. By rapidly moving the focal
point of the ARFI pulses, supersonic shear imaging
(SSI) modality produces a “Mach cone” shear wavefront
[19] which is tracked as a function of time to infer
stiffness moduli [20]. Another approach aims at mapping
viscoelastic properties of ablated versus healthy liver
by imaging shear waves over a range of frequencies
[21], the hypothesis being that ablation causes changes
in (frequency dependent) dispersive properties of liver
tissue. In the present paper, the frequency dependent
variation of SWV is ignored by estimating only the
group velocity by tracking a shear wave pulse (which
is essentially broadband in the frequency domain).

In this paper, 2D electrode vibration shear wave
imaging method is extended to three dimensions (3D)
by utilizing radiofrequency echo signals acquired over
a “sheaf” of imaging planes. A sheaf is defined as
a collection of planes that intersect along a common
axis. The 3D reconstruction algorithm is termed “Sheaf
Of UltrasoundPlanesReconstruction” orSOUPR. This
cylindrically symmetric method of acquisition is natu-
rally suited to electrode vibration elastography (EVE)
where shear wavefronts travel outward from a vibrating
needle which acts as a line source of shear waves [7].
Moreover, the overall shape of the ablation is approxi-
mately cylindrically symmetric with the ablation needle
as the axis of symmetry.

There has been growing interest in 3D ultrasound
imaging and elastography; one evidence being the evo-
lution of literature on this topic in the last two decades.
Elliott [22] notes the increasing use of 3D data acqui-
sition among ultrasound sonographers to circumvent the
limitations of traditional 2D ultrasound. Various authors
have analyzed reconstruction algorithms for 3D B-mode
imaging [23], [24] of different anatomical structures
using a variety of transducer types and scanning arrange-
ments. Quasistatic freehand elastography has received
much research attention [25], [26]. These 2D elastog-
raphy techniques can be naturally extended to 3D in
various ways. Freehand elastography can be performed
by manually translating the transducer probe through

parallel imaging planes. Alternatively, a “wobbler” that
mechanically rotates or translates an array transducer
using a stepper motor may be used. Other authors have
proposed using more elaborate robotic techniques [27]
for accurate control of the location of the transducer
in 3D space. Each image plane is processed using
standard elastography algorithms and a 3D rendering is
generated [28]. Freehand elastography can be augmented
with accurate optical [29] or magnetic position sensors
that precisely record the coordinates of the transducer.
Fortunately, for tumor ablation monitoring using EVE,
the ablation needle provides a good reference for man-
ually aligning the imaging plane. Elaborate tracking
and registration systems have the potential to improve
reconstruction accuracy. The present work uses only a
crude alignment strategy relying on the assumptions that
the underlying 3D structure is fairly symmetric about the
needle axis, independent sheaves (with relatively small
misregistration errors) are acquired, and the final 3D
reconstructions are averaged.

Results on 3D quasistatic strain [28], [30] and tran-
sient SWV reconstruction [31] for prostate imaging have
been reported in literature. Leeet al. [32] have reported
significant improvement in detection of cancerous breast
lesions when B-mode imaging is augmented with free-
hand 3D shear wave imaging. Literature on full 3D
reconstruction of SWVs and shear stiffness is still in
its nascency. In recent work by Wanget al. [33], 3D
reconstruction of muscle fiber orientation was achieved
by mapping group and phase velocities of the shear wave
wave set up using acoustic radiation force. Although the
use of matrix transducer arrays for volume ultrasound
imaging is gathering pace, linear and curvilinear array
transducers are still the most widely used transducer
types. Therefore, the ability to generate volume render-
ing akin to CT or MRI using 2D ultrasound data has
clinical value [22].

II. M ATERIALS AND METHODS

A. Electrode Vibration Setup

A schematic view of an EVE setup is shown in Fig. 1.
The needle mimics an RF electrode or a microwave
antenna that is used in an ablation procedure. This
needle is firmly bound to a stiff ellipsoidal inclusion
which mimics ablated tissue. This ellipsoid is embedded
in a softer background material that mimics healthy
(cancer-free) tissue. Additionally, an irregularly shaped
intermediate stiffness region is present on one side of
the ellipsoid that simulates partially ablated tissue. A
pulse deformation is applied to the needle using an
external actuator (Physik Instrumente, Germany) which
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Fig. 1. This schematic shows the data acquisition system used in
electrode vibration elastography experiments. The needleis vibrated
using an actuator. Data acquisitions are phase-locked by synchoroniz-
ing the ultrasound scanner pulse sequencing with the actuator motion.
The image plane is adjusted in such a way that it contains the needle.

is attached to the needle. This sets up a shear wave
pulse where the wave source is a line coinciding with
the needle and the shear wavefronts travel cylindrically
outward and away from this line.

Since the frame rates with traditional B-mode ultra-
sound imaging are not sufficient to track a shear wave
pulse (which travels with a velocity of a few meters per
second), a sequential tracking technique developed by
DeWall and Varghese [8] was used. This is similar to
the phase locking technique used in MRI elastography
[34]. In this method, the needle is vibrated multiple times
and with each vibration a different location at a specified
lateral distance away from the needle is scanned using
the ultrasound system (Ultrasonix SonixTouch, Rich-
mond, BC, Canada). Vertical strips of radiofrequency
ultrasound echo data are then registered and assembled
to obtain “pseudo-high-frame-rate” data over the entire
image plane as a function of time. The phase-locked
acquisition scheme assumes that the needle is vibrated
identically in each cycle and the image plane is not
changed during the acquisition. Alternatively, high frame
rate plane wave ultrasound imaging [35] can be used to
scan the entire image plane in a single transmit. In case
of periodic tissue motion with only a few constituent
frequencies, the method of radiofrequency phasor align-
ment described in the paper by Baghaniet al. [36] may
be applied.

In order to reconstruct a 3D SWV map, data is
acquired over a subset of a sheaf of planes. This subset
can be chosen in such a way that the planes are equi-
spaced in angle. For example, a sheaf of four imaging
planes is shown in Fig. 2. Although equispaced planes
were used in the present study, the SOUPR algorithm

RF electrode/needle

C-planes
at different
depths

Subset of 4 imaging
planes in a sheaf

Soft background
(healthy tissue)

Hard inclusion
(tumor)

Irregularly shaped
intermediate stiffness
region

Fig. 2. The tissue-mimicking phantom used in this study consisted
of a hard inclusion embedded in soft background and an irregularly
shaped partially ablated region on one side. A subset of a sheaf of
imaging planes containing four equiangular planes passingthrough a
line that coincides with the ablation needle is shown. A stack of C-
planes over which the shear wave velocities are interpolated is also
shown. The needle was vibrated vertically to set up a shear wave
pulse.

presented here can also handle scattered data points from
irregularly spaced imaging planes. The transducer was
manually adjusted to image specific angular locations in
the sheaf. Guide markers on the phantom container walls
were used to align the angle of the imaging plane. The
number of planes was varied from 4 to 16 to study the
effect on reconstruction quality with increasing number
of planes. Each volume reconstruction was repeated
using five independent datasets to ensure that slight
discrepancies in the locations of individual image planes
are averaged out. This method relies on misregistration
errors being small enough to be considered as part of the
additive measurement noise. In general, the method may
fail if there is significant relative translation or rotation
between two volumes. If greater accuracy in transducer
placement is desired, feedback control systems like one
described by Abolmaesumiet al. [37] may be employed.
Such systems are beyond the scope of the present work.

B. Tissue Mimicking Phantom

The tissue-mimicking (TM) phantom based study in-
volved data acquisition from a TM phantom constructed
using an oil-in-gelatin dispersion. This dispersion is
composed of microscopic oil droplets dispersed in a
gelatinous matrix. The proportion of oil in the matrix
controls the local stiffness. The density of this TM
material is very close to that of water (1000 kg/m3).
Further discussion on the manufacturing process and
properties of the TM phantom material can be found
in the paper by Madsenet al. [38]. The phantom used
in this study consists of a stiff ellipsoid embedded
in a softer background. This arrangement is designed
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to mimic the presence of a partially ablated tumor in
cirrhotic liver tissue. Additionally, a small irregularly
spaced area of slightly lower stiffness than the ellipsoid
is present on one side of the inclusion. This mimics the
presence of partially ablated cancerous tissue.

A stainless steel rod was glued to the center of the
ellipsoid in order to mimic the role of the ablation needle
in an actual ablation procedure. This rod was used for
generating shear waves in the phantom with the help of
an actuator. A 3D schematic of the phantom is shown
in Fig. 2. The TM phantom gelatin block is14 cm ×
14 cm× 9 cm. This block is placed in an open top1 cm
thick acrylic container. A2 cm deep layer of safflower oil
poured on the top surface of the TM phantom prevents
desiccation.

C. Algorithm

The 3D reconstruction algorithm SOUPR consists of
four distinct data processing steps, starting with the
acquisition of beamformed radiofrequency ultrasound
echo data, finally leading to the 3D stack of C-planes
of SWV estimates:

1) Displacement estimation from beamformed echo
data over each imaging plane.

2) Wavefront localization to obtain time to peak
(TTP) [39] displacement at different locations in
the imaging plane.

3) SWV estimation from TTP plots to obtain SWV
maps over each imaging plane.

4) Smooth function approximation on a grid over
each C-plane.

As seen in Fig. 2, each C-plane is perpendicular to all the
imaging planes. The SOUPR algorithm presented here
effectively breaks down a 3D reconstruction problem
into a sequence of decoupled 2D function approximation
problems. Each C-plane is processed separately and the
final 3D reconstruction is generated by stacking them
together.

The four steps are discussed in the following subsec-
tions.

1) Displacement Estimation:Ultrasound echo data is
acquired over each imaging plane as described previ-
ously in Section II-A. The sequential tracking acqui-
sition enables axial strips to be assembled into indi-
vidual frames to obtain high frame rates for tracking
shear waves. These frames provide snapshots of the
underlying medium at different time instants. Frame-to-
frame displacements are estimated using a standard 1D
cross-correlation algorithm [40]. An axial displacement
estimation routine is used with a window length of2mm
and 75% overlap. This procedure is repeated over the

entire imaging plane to obtain a displacement vs. time
profile at each pixel [41].

2) Wavefront Localization:The high frame rate dis-
placement data is used to localize the shear wave pulse.
It is assumed that the wave travels purely laterally away
from the needle. The time of arrival of the wave at differ-
ent locations away from the needle is recorded by finding
the time of peak displacement [39], [42]. A frequency
domain filter discards any frequency components that
are smaller than10% of the largest component of the
frequency spectrum of the displacement vs. time profiles.
This filters out any “high frequency” noise components
in the displacement-time profiles making it easier to
locate the peak. A quadratic fit with a 5-point window is
used around the peak to get sub-frame-number resolution
for the location of the peak.

3) Imaging Plane Reconstruction:The TTP data ob-
tained over each image plane can be used to estimate
SWV by calculating the reciprocal of the slope of the
TTP curves at different depths. However, some form of
smoothing must be applied prior to calculating the slope
because differentiating noisy data will amplify noise. An
important consideration for this noise filtering algorithm
is to preserve edge details between the stiff inclusion
and the soft background. An optimization algorithm that
fits a continuous piecewise linear function to the noisy
TTP curves [43] is designed with a function model
parametrized by the locations of breakpoints and slopes
of individual segments. Let the number of segments
in the fit be denoted byB, the unknown breakpoint
locations by{λi}

B
i=0 and unknown segment slopes by

{mi}
B
i=1. A piecewise linear function is modeled as:

f(x) =

B−1∑

i=0

χ[λi,λi+1)(x)

[
mi+1(x− λi)

+
i∑

j=1

mj(λj − λj−1)

]
(1)

where the “indicator function”χA(t) = 1 when t ∈
A and zero otherwise. A specific case of this function
model with B = 3 is shown in Fig. 3. It is assumed
that the noisy TTP data,{yi}Ni=1, originates from this
true underlying function. Therefore a constrained least-
squares problem can be formulated to estimate the free
parameters in this model:

minimize
1

N

N∑

i=1

(yi − f(xi))
2

subject to mi > 0, andλ0 < λ1 < . . . λB .

The least-squares optimization problem is solved us-
ing a standard sequential quadratic programming [44]
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Fig. 3. A piecewise linear model with unknown breakpoints
(λ1, λ2) is used for estimating local slope values (m1,m2, m3). The
reciprocals of these slope values are used as estimates of local shear
wave velocities at different lateral locations away from the electrode.

numerical optimization routine. Other methods such as
interior point optimization, log-barrier algorithms, or
stochastic optimization methods such as simulated an-
nealing [45] can also be used.

In reality, the number of segmentsB is not knowna
priori . Therefore the algorithm must choose a reasonable
B automatically. This problem of “model order selec-
tion” is handled using the Akaike information criterion
(AIC) [46] which trades off mean-squared error and
model complexity by minimizing the following function
by choice ofB:

AIC = N log(MSE/N) + (2B − 1)

whereMSE is the residual mean squared error between
the data and the fit. The intuition behind using this
criterion is that it not only penalizes a bad fit (large MSE)
but also penalizes the number of segments (model com-
plexity), thereby providing a safeguard from overfitting.
The optimization problem is solved with1 ≤ B ≤ 10
and the bestB is chosen to minimizeAIC. Finally the
SWV map for every image plane is filtered using a
4mm× 2mm median filter to remove any outliers.

The image plane containing the partially ablated re-
gion is also imaged using a commercial Supersonic
Imagine (Aix-en-Provence, France) scanner using the
ShearWave™ Elastography mode. SWV estimates are
obtained using ROIs placed in the three different regions
of the phantom.

4) C-plane Function Approximation:SWV estimates
on each C-plane are obtained from a second function
approximation routine. Fig. 2 also illustrates a set of C-

planes over which the SWV values are interpolated. The
goal is to provide smooth reconstructions of SWV values
using a fine grid on every C-plane.

Depending on the number of planes imaged in the
sheaf, SWV estimates are available along many con-
current radial lines passing through the needle axis on
each C-plane. (However, it is worth noting that this step
of the SOUPR algorithm is quite general and can be
applied even if data is not acquired in a sheaf pattern.)
For convenience, letx denote a vector of the unknown
values of SWVs on the user defined C-plane grid and
let b denote the vectorized version of the known SWV
values (data) along radial lines on the same C-plane. In
general, the known data points do not coincide with grid
points. Since this is now a 2D smoothing problem on a
particular C-plane, a local bilinear interpolation scheme
is used. Each known function value is expressed as a
linear combination of the four neighboring grid points.
The weighting coefficients for the grid neighbors of each
data point are represented using rows of a matrixA.
The number of rows inA is equal to the length ofb
and the number of columns is equal to the length ofx.
In theory, the unknown function values on the grid can
be computed by solving the system of linear equations
Ax = b.

Note that the number of unknowns (grid locations)
in the problem can be much larger than the number
of points at which the stiffness estimates are actually
known. SoA may not be full rank (it has fewer rows than
columns) which makes the system of linear equations ill-
posed. This ill-posedness is circumvented by adding an
extra term which penalizes a large value of the derivative
at any point in the reconstruction. Since differentiation
in the case of discrete data is simply a finite difference
operation, it can be compactly represented using another
(square) matrixB. Second order central differences
(Laplacian) are used here to penalize the second deriva-
tive of the underlying function. The derivative at each
grid node can be expressed as a linear combination of
its four neighboring grid nodes. The following least-
squares optimization problem can be used to solve for
the unknown values on the grid:

minimize
x

||Ax− b||2 + η||Bx||2 (2)

whereη > 0 is a regularization parameter that controls
the amount of smoothing. Fortunately, this problem has
a closed form solution given by:

x = (AT
A+ ηBT

B)−1
A

T
b. (3)

The aforementioned problem setup is closely related
to the idea of “Tikhonov regularization” for ill-posed
problems [47, Ch. 8]. Explicit computation of the matrix
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inverse in (3) should be avoided in practice. For the
present setup, each row ofA and B contain at most
four and five non-zero entries respectively, and the
matrix in the parentheses in (3) is sparse, symmetric and
block diagonal which can be efficiently inverted using
sparse factorization algorithms [44]. This also bypasses
any computational issues with large matrix dimensions
thereby allowing use of fine reconstruction grids.

If the smoothing parameterη is chosen arbitrarily,
larger values will force the final fit to be closer to
the null space of the penalty function which induces
smoothness, whereas small values will result in a more
undulating fit. However an objective method for selecting
this parameter is necessary for studying reconstruction
quality using summary statistics like the mean and stan-
dard deviation calculated from regions of interest in the
reconstructed image. For this study, an automatic method
called leave-one-out ordinary cross-validation (OCV) is
used to circumvent any user induced variability from
different values ofη. In this method, the fitting routine
is repeatedly run by excluding one data point at a time
and calculating the OCV score function given by:

OCV(η) =
1

M

M∑

k=1

(̂bk − bk)
2

whereM denotes the number of data points,bk denotes
the knowndata value at a skipped data point locationk,
and b̂k denotes the valuepredictedby the optimization
procedure when all but thekth data point are used to
solve (2). A grid search is then used to arrive at the
choice of η that minimizes this score function. The
smoothing parameter chosen in this manner also has a
desirable statistical property of minimizing the cross-
validation score which is an unbiased estimator of the
mean squared error risk [48, Sec 5.3]. Example C-plane
reconstructions with three different values ofη are shown
in Fig. 4. These plots were generated using a test function
of two dimensions:f(x, y) = 1 whenx2 + y2 ≤ 1 (unit
circle centered at the origin), and zero otherwise, with
the domain−2 ≤ x, y ≤ 2. Gaussian noise was added to
this function to simulate measurement errors in the shear
wave velocity and registration errors due to misalignment
of the image plane angle. The function values were
then imputed on a grid using (3). The “correct” value
of η for this case was found by minimizingOCV(η)
shown in Fig. 5. In the interest of processing time,η
was estimated only once per dataset using the C-plane
at half the maximum depth. It can be re-estimated for
every C-plane if desired.

In order to better understand the effect of noise and
varying number of image planes on the reconstruction

Fig. 5. OCV plot vs log(η). The minimizer in this case is
approximatelyη = e−3.

quality of this algorithm, a Monte Carlo simulation
experiment was performed using a single C-plane.
Using the same test function as above, synthetic data is
generated with 4, 6, 12 and 16 concurrent radial lines
with 80 equidistant samples along each line. Gaussian
noise for different signal to noise ratios (SNR) was added
to simulate measurement errors. Since the maximum
test function value is1, SNR is defined as20 log10(1/s)
wheres is the standard deviation of simulated Gaussian
noise. This noisy data was processed with the SOUPR
algorithm to reconstruct C-plane function valuesf̂(x, y)
on a 100 × 100 grid in the domain−2 ≤ x, y ≤ 2.
Reconstruction mean squared error was calculated using
1

104

100∑
i=1

100∑
j=1

∣∣∣f
(
4i−202

99 , 4j−202
99

)
−f̂

(
4i−202

99 , 4j−202
99

)∣∣∣
2
,

where the scaling and shifts ensure that the functions
f and f̂ are evaluated in the domain−2 ≤ x, y ≤ 2.
This simulation was repeated 10,000 times. Results are
shown in Section III-A.

D. Data Analysis

The quality of 3D reconstructions was gauged by
calculating the contrast (C) and contrast-to-noise ratio
(CNR) for pairs of regions in the TM phantom. In
conventional 2D elastography, these statistics are cal-
culated over carefully chosen regions of interest (ROI).
For the 3D case, the same idea is extended here by
choosing parallelepiped shaped ROIs, with lateral and
elevation dimensions of5mm each and10mm axially.
These statistics are presented in decibel units using the
following formulas [40], [49]:

C = 20 log10

(
µ1

µ2

)
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(a) Under-smoothing (b) Over-smoothing (c) Correct smoothing

Fig. 4. This figure shows the effect of using different valuesof the smoothing parameterη in the fitting procedure applied to simulated
noisy data. Whenη is too small, the resulting fit follows the noise as seen in (a), whereas ifη is too big it causes over-smoothing as seen
in (b). The correct smoothing parameter value strikes an “optimal” balance as seen in (c). This value is chosen to minimize the OCV score
plotted in Fig. 5.

Fig. 6. Mean squared reconstruction error (MSE) from simulated
data at different noise levels and varying number of image planes.
The reconstruction error is largest when only 4 image planesare used.
No significant improvement is obtained by increasing the number of
planes from 6 to 16, as seen from the overlapping errorbars around
the MSE values.

and

CNR = 20 log10

(
2(µ1 − µ2)

2

σ2
1 + σ2

2

)
.

where µ and σ respectively denote the mean and the
standard deviation values of the SWVs calculated over
each ROI and the subscripts indicate two distinct media.
The mean and standard deviations over 5 independent
datasets were obtained after converting to dB.

III. R ESULTS

A. Simulations

Results of Monte Carlo simulations are shown in
Fig. 6. Note that the reconstruction error decreases with
increasing SNR, irrespective of the number of image
planes used. In all cases the reconstruction error was

(a) Contrast

(b) CNR

Fig. 9. Plots of (a) Contrast and (b) CNR as a function of the
number of imaging planes. Contrast and CNR plots are for three
different pairs of regions. (BKG=background, PAR=partially ablated,
INC=inclusion)
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TABLE I
SHEAR WAVE VELOCITY ESTIMATES

# imaging planes background partially ablated inclusion

4 0.7642 ± 0.0722 1.0106 ± 0.0218 1.3264 ± 0.1039

6 0.7454 ± 0.0432 1.0205 ± 0.0195 1.3357 ± 0.1395

12 0.7623 ± 0.0612 0.9947 ± 0.0251 1.3412 ± 0.1007

16 0.7608 ± 0.0673 0.9814 ± 0.0256 1.3324 ± 0.1019

SSI 0.9± 0.07 1.1± 0.05 1.2 ± 0.03

Values of SWV (in m/s) for the three regions of interest are shown. The number
of imaging planes used for 3D reconstruction is varied from 4to 16. The mean
and standard deviations were calculated over 3D parallelepiped shaped ROIs.
For comparison, measurements from the commercial Supersonic Imagine (SSI)
ShearWave™ Elastography imaging mode are also shown. Note that the SSI
measurements were obtained using conventional 2D ROIs fromonly a single
imaging plane with the partially ablated region in view (cf.Fig. 12).

(a) (b) (c) (d)

Fig. 7. Ultrasound B-mode image and respective shear wave velocity (SWV) images are shown. Note the clear visualizationof the partially
ablated region seen on B-mode in (a) and in the shear wave image obtained using the piecewise linear fitting algorithm in (b). B-mode (c)
and SWV reconstruction (d) for an image plane not including the partially ablated region are also shown for comparison. Backscattered
intensity was varied in the phantom to visualize normal, ablated and partially ablated areas in the B-mode reference images.

(a) 4 imaging planes (b) 6 imaging planes (c) 12 imaging planes (d) 16 imaging planes

Fig. 8. Example C-plane reconstructions of shear wave velocity at an axial depth of2.8 cm with different number of imaging planes.
Observe that as more planes of data are introduced, the variability and finer detail in the boundary increases, and the “wheel spoke” artifact
becomes less pronounced.

largest when 4 image planes are used. On average, the
16 plane case gives the best reconstruction accuracy, but
the error bars overlap considerably when the number of
planes is 6, 12 or 16. This suggests that for the ideal case
of a perfectly radially symmetric inclusion, increasing
the number of image planes beyond 6 does not lead to
any significant improvement in reconstruction quality.

B. Phantom Data

The reconstructed SWV maps for two of the imaging
planes over which radiofrequency ultrasound data loops
were acquired are shown in Fig. 7. SWV reconstructions
were performed by applying piecewise linear fitting to
the raw TTP data as illustrated in Fig. 3. The first image
plane passes through the partially ablated region which
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can be visualized in both the B-mode and the SWV
reconstruction while the second plane is aligned such
that the partially ablated region is not seen. Note that
these regions of varying stiffness are not as easily visible
in real tissue using a B-mode scan. But they can be
easily seen here because the TM phantom material was
designed to have different acoustic echogenicities for
different regions. C-plane slices using different numbers
of angular planes between 4 and 16 are shown in Fig. 8.
The partially ablated region can be seen on the right side
of the inclusion in all the four C-planes.

The estimated SWVs shown in Table I do not change
significantly as the number of planes in the sheaf was
changed. This is because the structure of the phantom is
quite symmetrical, so on average the measured SWVs do
not vary when new planes of data are added. The reg-
ularized function estimation framework described here
is also related to classical statistical learning theory:
the choice ofη is related to the so called bias-variance
tradeoff [50, Ch. 2, Sec. 2.2.2]. A small value ofη will
produce an undulating fit, i.e., an estimator with low bias
but high variance. On the other hand, larger value ofη
will reduce the variance and increase the bias. AIC in
the piecewise linear fitting algorithm and regularization
in the optimization problem are both ways to trade off
some variance at the cost of introducing a bias in the
estimated function. As a result of the smoothing, the
SWV estimates shown in Table I are lower than the
true values for the phantom calculated using the known
material stiffness (Young’s modulus). But they agree
quite well with the SWV estimates obtained using SSI
shown in the last row of the table. Moreover, delineation
of ablated and partially ablated regions, which is of
paramount importance, can be easily seen in the C-plane
images.

There are several tradeoffs associated with increasing
the number of imaging planes for 3D reconstruction. Ad-
ditional planes would require significantly more data ac-
quisition and processing to obtain SWV reconstructions.
A quantitative evaluation of improvements obtained by
increasing the number of imaging planes is therefore
necessary to determine a reasonable number of planes
needed for fast imaging. Image quality metrics calculated
over 5 independent datasets are shown in Fig. 9. The
largest contrast of about 5 dB in Fig. 9(a) is obtained
when comparing the soft background with the hard
inclusion, also imaged with 6 imaging planes. A highest
CNR of 1.5 dB is obtained using 6 imaging planes in the
sheaf as illustrated in Fig. 9(b). As one would expect, the
highest contrast values were seen between the inclusion-
background regions. In general, there is a decreasing
trend in all image quality statistics as the number of

(a) 3D render

(b) slice view

Fig. 10. (a) 3D reconstructed volume of the inclusion using 6
imaging planes obtained by thresholding. (b) Three slice view of
the 3D volume with SWV shown in m/s.

planes was increased.
The full 3D reconstruction using 6 imaging planes is

shown in Fig. 10. This is created by stacking together
the individual C-planes. This 3D render should be inter-
preted with caution because only an apparent estimate
of the shear wave velocities is obtained. It should not
be misconstrued as a solution of a full 3D shear wave
propagation inverse problem. Fig. 10(a) is obtained by
thresholding and is for visualization only. Numerical
information is shown in the three-slice view in Fig. 10(b).

IV. D ISCUSSION

This paper presented a novel technique for acquiring,
processing and displaying a 3D rendering of the SWV
distributions for ultrasound shear wave elastography
using a stack of C-plane reconstructions. The C-plane
visualizations of the ablation slices can also be utilized
to clearly delineate ablation boundaries. The sheaf of
ultrasound planes reconstruction (SOUPR) algorithm is
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presented and validated using TM phantom experiments
for EVE.

A piecewise linear fit was used in this paper to accen-
tuate change points with the goal of improving boundary
delineation in the reconstructed SWV maps on individual
scan planes. Other noise filtering methods such as least
squares linear or polynomial fitting [51] or Kalman
filtering [52] can also be used. The idea of Tikhonov
regularization for smooth function approximation was
previously applied to displacement estimation by Rivaz
et al. [53]. In contrast, this paper uses regularized
optimization to reconstruct smooth shear wave velocity
maps from undersampled grids. It is worth noting that the
second order finite differencing regularization term used
in this work can be replaced with first or higher order
derivatives or any other types of penalty functions that
promote smoothness. The key requirement is the ability
to express the penalty as a linear operation so that the
formulation in (2) can still be used.

The contrast stays almost constant as the number of
planes in the sheaf was increased. The CNR quality
metric shows a decreasing trend as the number of
planes is increased. This may be a side effect of the
smooth C-plane fitting algorithm. The fitting algorithm
approximates a smooth surface in regions where there
are no data points. With fewer number of planes there
are larger regions with no data points, resulting in a
visually smoother fit which corresponds to better CNR
in the image. On the other hand, when the number of
image planes is increased, the voids are much smaller.
Therefore the first term in the optimization problem (2)
exerts greater influence forcing the surface fit to appear
more undulating. To enable fairer comparison between
reconstructions performed with different number of im-
age planes, these quality metrics may have to be modified
by accounting for these effects.

Various artifacts can also be seen in the SWV maps
and the C-plane reconstructions. These are summarized
in Fig. 11. High velocity artifacts appear above and
below the inclusion because the assumption of purely lat-
eral shear wave propagation may not hold those regions.
Removal of such artifacts has been studied previously
[54] and can be incorporated into the 3D reconstruction
algorithm. High velocity artifacts are also seen close
to the edge of the image plane due to limited imaging
aperture in those areas. Methods for removal of artifacts
due to wavefront distortion and reflection have been
discussed previously [10], [55] and have the potential to
improve reconstruction quality for the 3D case too. Low
velocity artifacts seen in areas adjacent to the needle
have been observed in previous EVE studies [8] and
require further investigation. The authors conjecture that

Fig. 11. This figure shows various structures and artifacts present in
the SWV image plane. The red arrow points to the stiff ablatedregion
and the black arrow points to the partially ablated region. There is a
low velocity artifact near the needle shown by the blue arrowat the
center. There are high velocity artifacts close to the edge of the image
shown with green arrows in the top right and bottom left corners. The
violet arrow near the top of the image plane points to a high velocity
artifact due to the needle.

the shear wave pulse takes some time to accelerate to its
maximum speed after the needle is vibrated resulting
in perceived low velocity close to the needle source.
This artifact may not be a serious hurdle in application
because regions immediately adjacent to the needle are
certainly ablated; confirming the location of the outer
boundary of the ablation is more crucial. Results in a
recent paper by Deffieuxet al. [56] suggest that the
uncertainty in measuring higher shear wave velocities is
inherently higher. This indicates there is a lower limit to
how accurately SWV maps can be reconstructed inside
the stiff inclusion.

A visible side effect of the sheaf imaging strategy
is the “wheel spoke” artifact seen in Fig. 8, especially
when using fewer planes in the sheaf. These appear as
radial streaks emanating from the center of the C-plane
and coinciding with the radial locations of the image
planes over which ultrasound echo data was acquired.
The smoothing parameter can be manually tuned to get
rid of such artifacts—a larger value ofη will smooth
out such variations. In a commercial system, there may
be regulatory hurdles to allowing the user to control the
value ofη, but it may be possible to include an additional
preset akin to smoothing and edge enhancement which
is available on almost all ultrasound scanners.

The phantom experiment setup in this paper was
designed to mimic a liver ablation procedure. In other
real world situations, it may be more challenging to
align the needle along the axial beam direction of the
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Fig. 12. A “bronze standard” SWV image of the phantom inclusion
corresponding to the same imaging plane of Fig. 7(a). This image
was acquired using a Supersonic Imagine ultrasound scannerwith
the shear wave imaging mode. (Original image has been cropped
and rearranged to fit.)

transducer. In situations where the needle is at an angle
to the axial ultrasound beam direction, 2D displacement
tracking algorithm can be used. The component of these
displacements parallel to the needle can be extracted
and TTP values along lines perpendicular to the needle
can be calculated in steps 2 and 3 of Section II-C,
respectively. In case of physical constraints on placing
the transducer around the needle, it may be impossible
to obtain the complete sheaf, resulting in voids in the
dataset. But a partial volume reconstruction can still
be obtained using the same algorithm presented in this
paper, using only that part of the fine grid where data
points are present. The four step decomposition offers
good flexibility for tuning the details of each signal
processing block for specific applications. For exam-
ple, some commercial ultrasound scanners already offer
imaging modes to map shear wave velocities (either as
point estimates or over large regions) irrespective of the
alignment of the image plane with respect to the needle.
In such systems, it will be convenient to incorporate one
additional block for step 4 at the end of the existing
signal processing chain to generate 3D volume maps.

It is also useful to compare the SWV image plane
reconstruction with a “bronze standard” image acquired
from a commercial Supersonic Imagine ultrasound scan-
ner with shear wave imaging capability. Fig. 12 shows
one image plane of the phantom with a SWV overlay on
B-mode. The image plane is identical to the one shown
in Figs. 7(a) and (b). Note that high velocity artifacts
can be seen at depths greater than2.5 cm.

Results in this paper indicate that 6 planes in a sheaf
are sufficient for fast reconstruction in the particular
TM phantom used, both qualitatively and quantitatively.

This is because the shape of the inclusion was mostly
symmetric about the needle, (except for a small ir-
regularly shaped partially ablated region). This was
also confirmed by the simulation experiment that was
specifically used to mimic the situation in the phantom
experiment. Greater number of image planes may be
needed if the inclusion is more irregularly shaped. More
complex geometries can be simulated ahead of time
using the method described in Section II-C4 to decide
on a suitable number of image planes in the sheaf as part
of pre-ablation clinical planning.

The location and number of angular planes can also
be optimized with the aim of minimizing the number
of planes required for effective 3D reconstruction while
maximizing the processing speed. This will also allow
implementation of 3D reconstruction algorithms on low
end commercial ultrasound systems which may not be
equipped with sufficient processing power or modern
graphical processing units (GPUs). Minimization of the
number of planes will enable faster data acquisition
and processing for eventual real-time implementation
of 3D SWV volume reconstructions. Adaptive or non-
uniform sampling of complex regions, for example those
including the simulated, partially ablated regions as
shown in Figs. 7–8 and regions near large vessels during
in vivo implementations, will have to be evaluated to
determine if this can further improve delineation. Data
can be acquired in multiple passes where the interpolated
visualization from an earlier pass provides feedback for
sampling critical locations in the volume, enabling an
adaptive sampling approach for improved delineation.

Although the sheaf pattern of acquisition is naturally
suited to the geometry of the EVE setup, an inherent
limitation of this method is that every image plane must
contain the needle to enable time of arrival estimation.
In a sheaf, data samples progressively get sparser away
from the needle. This shortcoming can be addressed by
sampling extra planes in the sheaf so that a certain fine
sample spacing is achieved at a predetermined distance
away from the needle. Alternatively, if a specific ROI
has already been located, imaging planes that are not uni-
formly spaced in angle can be employed; finer spacing in
specific regions may provide better reconstruction quality
at those locations. Knowledge from earlier iterations of
the reconstruction algorithm may also be incorporated
in the interpolation procedure, by reconstructing only
parts of the full volume that are known to contain
any interesting features, either automatically or with the
intervention of a clinician.
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V. CONCLUSION

Monitoring tumor ablations to determine the spatial
extent of treatment is fundamentally a 3D problem. 3D
imaging is essential to determine if the entire tumor and
surrounding margins have been successfully ablated to
ensure favorable outcomes from this minimally invasive
procedure. Current 3D ultrasound imaging using wobbler
transducers are inefficient in depicting ablation volumes
as imaging planes are collected in a raster fashion.
By exploiting the axis of symmetry about the ablation
needle, the SOUPR algorithm developed in this paper
provides good 3D visualization using significantly fewer
planes and faster 3D reconstructions. Various image
quality statistics evaluated using independent datasets
indicate that the SOUPR algorithm provides good con-
trast between the tumor and surrounding softer regions.
Moreover, the algorithms presented in this paper can
be easily extended to process other types of data (such
as strain) to produce similar C-plane reconstructions for
visualization of ablated regions.
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