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Three Dimensional Sheaf of Ultrasound Planes
Reconstruction (SOUPR) of Ablated Volumes

Atul Ingle*, Student Member, IEEEBnd Tomy VargheseSenior Member, |IEEE

Abstract—This paper presents an algorithm for three one of the leading cause of cancer related deaths [1].
dimensional reconstruction of tumor ablations using ul- Tumor ablation therapy is a minimally invasive proce-
trasound shear wave imaging with electrode vibration dure that can be used to treat smaller localized tumors.
elastography. Radiofrequency ultrasound data frames are Ragjofrequency (RF) and microwave ablation procedures
acquired over imaging planes that form a subset of a sheaf ;..o insertion of an ablation needle into the affected
of planes sharing a common axis of intersection. Shear . . . .
wave velocity is estimated separately on each imaging planearea and inducing localized heating to t-hermglly ‘?°a9”'
using a piecewise linear function fitting technique with a late the cancerous cells. Accurate real-time visualipatio
fast optimization routine. An interpolation algorithm the n  Of the ablated region has clinical value because it can
computes velocity maps on a fine grid over a set of C- provide immediate feedback to the clinician about the
planes that are perpendicular to the axis of the sheaf. A extent of ablation. Accurate control of the ablation
full three dimensional rendering of the ablation can then volume is crucial for preventing recurrence of tumors,
be created from this stack of C-planes; hence the name gyising from the presence of untreated cancerous cells.
Sheaf Of.UItra.\sound Planes Reconstructllon or SOQPR. The problem of boundary delineation for tumor vi-
The algorithm is evaluated through numerical simulations sualization has been an important signal processing

and also using data acquired from a tissue mimicking . . dical i ; daliti Si i
phantom. Reconstruction quality is gauged using contrast ISSU€ In varous medical imaging modalities. Since liver

and contrast-to-noise ratio measurements and changes intUmors may not have sufficient echogenic contrast
quality from using increasing number of planes in the @a-Vis healthy liver tissuel[2],[[3],[[4], visualizing them
sheaf are quantified. The highest contrast of 5B is seen on a conventional B-mode image is challenging. Ultra-
between the stiffest and softest regions of the phantom. sound elastography attempts to derive local mechanical
Under certain idealizing assumptions on the true shape of properties of tissue from estimated displacemenits [5]. It
the ablation, good reconstruction qu.ality While maintaining pHgs potential to augment traditional B-scans and assist
fast processing rate can be obtained with as few as 6o clinician in delineating ablation boundaries more
imaging planes suggesting that the method is suited for .
parsimonious data acquisitions with very few sparsely accurately.. Unlike X—ray computed tomog.rz.nlphy (CT)
chosen imaging planes. or magnetic resonance |mag|ng_(MRI), trao_lltloan uItrg-
_ _ sound elastography has been limited to single imaging
Index Terms—ablation, shear stiffness, sheaf, 3D recon- planes, over which strain is estimated, and the Young’s
struction, ultrasound, shear wave elastography, electroel 15 (stiffness) is reconstructed by solving the in-
vibration .
verse problem[[6], 7], 18], [[9]. Shear wave velocity
(SWV) and shear modulus can also be estimated for
I. INTRODUCTION these imaging planes [10]. The accuracy of such methods

IVER cancer is one of the most common forms df limited by the underlying assumptions about tissue

cancer in the world with a very high mortality irloleXelasticity and other geometric and boundary effects.

(mortality to incidence ratio of 93% (2008)) making it TV\_'O d|me|_13|onal (.ZD) ultrasound has be_en W|de_ly
applied to tissue stiffness measurements in ablation
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perturbing the medium using the ablation needle ampdrallel imaging planes. Alternatively, a “wobbler” that
displaying the rate of change of displacements withechanically rotates or translates an array transducer
depth (strain). Prior information about the shape of thesing a stepper motor may be used. Other authors have
ablated area can be harnessed to improve boundargposed using more elaborate robotic technigues [27]
visibility in the strain imagel[16]. Alternatively, dynami for accurate control of the location of the transducer
elastography methods can also be used to visualine3D space. Each image plane is processed using
tissue mechanical properties. Acoustic radiation foretandard elastography algorithms and a 3D rendering is
imaging (ARFI) [17], [18] involves application of high generated [28]. Freehand elastography can be augmented
frequency focussed ultrasound pulses to create localizeith accurate optical [29] or magnetic position sensors
displacement in liver tissue. These displacements cidwat precisely record the coordinates of the transducer.
be tracked using radiofrequency ultrasound echoes drfattunately, for tumor ablation monitoring using EVE,
generate an ARFI image. By rapidly moving the focahe ablation needle provides a good reference for man-
point of the ARFI pulses, supersonic shear imaginglly aligning the imaging plane. Elaborate tracking
(SSI) modality produces a “Mach cone” shear wavefroand registration systems have the potential to improve
[19] which is tracked as a function of time to infereconstruction accuracy. The present work uses only a
stiffness moduli[[20]. Another approach aims at mappirgude alignment strategy relying on the assumptions that
viscoelastic properties of ablated versus healthy livere underlying 3D structure is fairly symmetric about the
by imaging shear waves over a range of frequencieeedle axis, independent sheaves (with relatively small
[21], the hypothesis being that ablation causes changmeisregistration errors) are acquired, and the final 3D
in (frequency dependent) dispersive properties of liveeconstructions are averaged.
tissue. In the present paper, the frequency dependerResults on 3D quasistatic strain _[28], [30] and tran-
variation of SWV is ignored by estimating only thesient SWV reconstruction [31] for prostate imaging have
group velocity by tracking a shear wave pulse (whicbeen reported in literature. Lesd al. [32] have reported
is essentially broadband in the frequency domain).  significant improvement in detection of cancerous breast

In this paper, 2D electrode vibration shear waJesions when B-mode imaging is augmented with free-
imaging method is extended to three dimensions (3band 3D shear wave imaging. Literature on full 3D
by utilizing radiofrequency echo signals acquired oveeconstruction of SWVs and shear stiffness is still in
a “sheaf” of imaging planes. A sheaf is defined &g nascency. In recent work by Wargg al. [33], 3D
a collection of planes that intersect along a commasaconstruction of muscle fiber orientation was achieved
axis. The 3D reconstruction algorithm is terme$héaf by mapping group and phase velocities of the shear wave
Of UltrasoundPlanesReconstruction” oiSOUPR This wave set up using acoustic radiation force. Although the
cylindrically symmetric method of acquisition is natuuse of matrix transducer arrays for volume ultrasound
rally suited to electrode vibration elastography (EVEjnaging is gathering pace, linear and curvilinear array
where shear wavefronts travel outward from a vibratingansducers are still the most widely used transducer
needle which acts as a line source of shear waves [Ejpes. Therefore, the ability to generate volume render-
Moreover, the overall shape of the ablation is approxig akin to CT or MRI using 2D ultrasound data has
mately cylindrically symmetric with the ablation needlelinical value [22].
as the axis of symmetry.

There has been growing interest in 3D ultrasound II. MATERIALS AND METHODS
imaging and elastography; one evidence being the evo- _
lution of literature on this topic in the last two decade$" Electrode Vibration Setup
Elliott [22] notes the increasing use of 3D data acqui- A schematic view of an EVE setup is shown in Fig. 1.
sition among ultrasound sonographers to circumvent tfibe needle mimics an RF electrode or a microwave
limitations of traditional 2D ultrasound. Various authorantenna that is used in an ablation procedure. This
have analyzed reconstruction algorithms for 3D B-modeedle is firmly bound to a stiff ellipsoidal inclusion
imaging [23], [24] of different anatomical structuresvhich mimics ablated tissue. This ellipsoid is embedded
using a variety of transducer types and scanning arrange-a softer background material that mimics healthy
ments. Quasistatic freehand elastography has receiyeancer-free) tissue. Additionally, an irregularly shape
much research attention [25], [26]. These 2D elastompermediate stiffness region is present on one side of
raphy techniques can be naturally extended to 3D fine ellipsoid that simulates partially ablated tissue. A
various ways. Freehand elastography can be perfornpdse deformation is applied to the needle using an
by manually translating the transducer probe througixternal actuator (Physik Instrumente, Germany) which
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Fig. 2. The tissue-mimicking phantom used in this study =ted

of a hard inclusion embedded in soft background and an itaegu
Fig. 1. This schematic shows the data acquisition systerd irse shaped partially ablated region on one side. A subset of af sife
electrode vibration elastography experiments. The neiedibrated imaging planes containing four equiangular planes padsirmyigh a
using an actuator. Data acquisitions are phase-lockedrmhsyoniz- line that coincides with the ablation needle is shown. AlstafcC-
ing the ultrasound scanner pulse sequencing with the actoaition. planes over which the shear wave velocities are interpbletelso
The image plane is adjusted in such a way that it containsahdla. shown. The needle was vibrated vertically to set up a sheae wa
pulse.

is attached to the needle. This sets up a shear wave )
pulse where the wave source is a line coinciding Wilﬁ)]resented here can also handle scattered data points from

the needle and the shear wavefronts travel cylindricalfyedularly spaced imaging planes. The transducer was
outward and away from this line. rmanually adjusted to image specific angular locations in

Since the frame rates with traditional B-mode ultran€ sheaf. Guide markers on the phantom container walls

sound imaging are not sufficient to track a shear Wa\%erebuse(: t? align the 3”9"3 ?f the imaging pIanS. T:e
pulse (which travels with a velocity of a few meters pdfUMPEr O planes was varied ifrom 4_ to 16 tp study the

second), a sequential tracking technique developed ct on reconstruction quality with increasing number

DeWall and Varghese [8] was used. This is similar @ _planfas. _Each volume reconstruction was repegted
the phase locking technique used in MRI elastograp ?lng five _mdgpendent (_Jlataset;, to ensure that slight
[34]. In this method, the needle is vibrated multiple time screpancies in the I(_)catlons of |n(_j|V|duaI 'mage pIan_es
and with each vibration a different location at a specifit] © avEra_lged OU:I' This n;]eth(tJ)d relles_don ?lsreglstraglc;]n
lateral distance away from the needle is scanned usﬂég_r_s €ing small enougn to be consi T’reh as pirt(;) the
the ultrasound system (Ultrasonix SonixTouch, Ricfidditive measurement noise. In general, the method may

mond, BC, Canada). Vertical strips of radiofrequencf il if there is significant relative translation or rotatio

ultrasound echo data are then registered and assem fyveen tvvp vqu_mes. If greater accuracy in tran_sducer
to obtain “pseudo-high-frame-rate” data over the enti acement is desired, feedback control systems like one

image plane as a function of time. The phase-lock a‘escribed by Abolmaesuret al. [37] may be employed.

acquisition scheme assumes that the needle is vibra?eLbCh systems are beyond the scope of the present work.

identically in each cycle and the image plane is not
changed during the acquisition. Alternatively, high framB- Tissue Mimicking Phantom
rate plane wave ultrasound imaging [35] can be used toThe tissue-mimicking (TM) phantom based study in-
scan the entire image plane in a single transmit. In caggived data acquisition from a TM phantom constructed
of periodic tissue motion with only a few constituentising an oil-in-gelatin dispersion. This dispersion is
frequencies, the method of radiofrequency phasor aliggemposed of microscopic oil droplets dispersed in a
ment described in the paper by Baghahil. [36] may gelatinous matrix. The proportion of oil in the matrix
be applied. controls the local stiffness. The density of this TM
In order to reconstruct a 3D SWV map, data imaterial is very close to that of watet000 kg/m?3).
acquired over a subset of a sheaf of planes. This subBetther discussion on the manufacturing process and
can be chosen in such a way that the planes are equisperties of the TM phantom material can be found
spaced in angle. For example, a sheaf of four imagimg the paper by Madseat al. [38]. The phantom used
planes is shown in Fid.l 2. Although equispaced plan&s this study consists of a stiff ellipsoid embedded
were used in the present study, the SOUPR algoritim a softer background. This arrangement is designed
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to mimic the presence of a partially ablated tumor iantire imaging plane to obtain a displacement vs. time
cirrhotic liver tissue. Additionally, a small irregularlyprofile at each pixel[41].
spaced area of slightly lower stiffness than the ellipsoid 2) Wavefront Localization:The high frame rate dis-
is present on one side of the inclusion. This mimics th@acement data is used to localize the shear wave pulse.
presence of partially ablated cancerous tissue. It is assumed that the wave travels purely laterally away
A stainless steel rod was glued to the center of tli®m the needle. The time of arrival of the wave at differ-
ellipsoid in order to mimic the role of the ablation needlent locations away from the needle is recorded by finding
in an actual ablation procedure. This rod was used fitre time of peak displacement [39], [42]. A frequency
generating shear waves in the phantom with the helpadmain filter discards any frequency components that
an actuator. A 3D schematic of the phantom is shovane smaller thani0% of the largest component of the
in Fig.[2. The TM phantom gelatin block is4cm x frequency spectrum of the displacement vs. time profiles.
14 cm x 9cm. This block is placed in an open tdpem  This filters out any “high frequency” noise components
thick acrylic container. 2 cm deep layer of safflower oil in the displacement-time profiles making it easier to
poured on the top surface of the TM phantom preverltsate the peak. A quadratic fit with a 5-point window is

desiccation. used around the peak to get sub-frame-number resolution
for the location of the peak.
C. Algorithm 3) Imaging Plane Reconstructiorthe TTP data ob-

] ) ) tained over each image plane can be used to estimate
The 3D reconstruction algorithm SOUPR consists @y, by calculating the reciprocal of the slope of the

four distinct data processing steps, starting with therp ¢yrves at different depths. However, some form of
acquisition of beamformed radiofrequency ultrasoung,oqthing must be applied prior to calculating the slope
echo data, finally leading to the 3D stack of C-plang,cqyse differentiating noisy data will amplify noise. An
of SWV estimates: important consideration for this noise filtering algorithm
1) Displacement estimation from beamformed echg to preserve edge details between the stiff inclusion
data over each imaging plane. and the soft background. An optimization algorithm that

2) Wavefront localization to obtain time to peakits a continuous piecewise linear function to the noisy
(TTP) [3€] displacement at different locations inTTP curves [[48] is designed with a function model

the imaging plane. parametrized by the locations of breakpoints and slopes
3) SWV estimation from TTP plots to obtain SWVof individual segments. Let the number of segments

maps over each imaging plane. in the fit be denoted byB, the unknown breakpoint
4) Smooth function approximation on a grid ovefpcations by{\;}Z, and unknown segment slopes by

each C-plane. {m;}2 . A piecewise linear function is modeled as:

As seen in Fig. 12, each C-plane is perpendicular to all the B_1

imaging planes. The SOUPR algorithm presented here ¢, — Yix a0y (@ [mz -\
effectively breaks down a 3D reconstruction problem ) ; R )
into a sequence of decoupled 2D function approximation

problems. Each C-plane is processed separately and the + ij()\j — )\j_l)] (1)
final 3D reconstruction is generated by stacking them j=1
together.

The f di din the followi b where the “indicator function®4(t) = 1 whent €
e four steps are discussed In the following Subseg-,q zerg otherwise. A specific case of this function

tions. <o mationul d echo data i model with B = 3 is shown in Fig[B. It is assumed
1) Displacement EstimationUltrasound echo data ISthat the noisy TTP data{y;}! ,, originates from this

acquired over each imaging plane as described Preyje underlying function. Th =1

v in Secii h il K erefore a constrained least-
ously in SectiorlIl-A. The sequential tracking acquizyares problem can be formulated to estimate the free
sition enables axial strips to be assembled into in

: S . Parameters in this model:
vidual frames to obtain high frame rates for trackin

shear waves. These frames provide snapshots of the L 1 Y 9
underlying medium at different time instants. Frame-to- ~ "AC N Z(yi = flai))
frame displacements are estimated using a standard 1D =
cross-correlation algorithm_[40]. An axial displacement

estimation routine is used with a window length2ohm The least-squares optimization problem is solved us-
and 75% overlap. This procedure is repeated over thieg a standard sequential quadratic programming [44]

subject to m; >0, and g < A\ < ...)\p.
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True TTP

planes over which the SWV values are interpolated. The
goal is to provide smooth reconstructions of SWV values
using a fine grid on every C-plane.

Depending on the number of planes imaged in the
sheaf, SWV estimates are available along many con-
current radial lines passing through the needle axis on
each C-plane. (However, it is worth noting that this step
of the SOUPR algorithm is quite general and can be
applied even if data is not acquired in a sheaf pattern.)
For convenience, lex denote a vector of the unknown
values of SWVs on the user defined C-plane grid and
7 let b denote the vectorized version of the known SWV
oM values (data) along radial lines on the same C-plane. In
' M r general, the known data points do not coincide with grid

Lateral location (arbitrary wnits) points. Since this is now a 2D smoothing problem on a
Fig. 3 A piecewise linear model with unknown breakpoints?articmar C-plane, a local b.i”near inte.rpOIation scheme
(/\1;)\2.) is used for estimating local slope values(, m2, ms). The '_S used. Ea_Ch i_(nown function va}lue 'S_ eXpre_SS(ed_ as a
reciprocals of these slope values are used as estimatesabfskeear lin€ar combination of the four neighboring grid points.
wave velocities at different lateral locations away frore #lectrode. The weighting coefficients for the grid neighbors of each

data point are represented using rows of a mafkix

The number of rows inA is equal to the length ob
numerical optimization routine. Other methods such agd the number of columns is equal to the lengthxof
interior point optimization, log-barrier algorithms, ofin theory, the unknown function values on the grid can
stochastic optimization methods such as simulated &t computed by solving the system of linear equations
nealing [45] can also be used. Ax — b.

In reality, the number of segment$ is not knowna  Note that the number of unknowns (grid locations)
priori. Therefore the algorithm must choose a reasonalfethe problem can be much larger than the number
B automatically. This problem of “model order selecof points at which the stiffness estimates are actually
tion” is handled using the Akaike information criteriornknown. SoA may not be full rank (it has fewer rows than
(AIC) [46] which trades off mean-squared error angpjumns) which makes the system of linear equations ill-
model complexity by minimizing the following function posed. This ill-posedness is circumvented by adding an
by choice ofB: extra term which penalizes a large value of the derivative

AIC = N log(MSE/N) + (2B — 1) ?.t any point in t_he reconstru_ctiqn. Since_ d_iffer(_antiation

in the case of discrete data is simply a finite difference

where MSE is the residual mean squared error betwe@peration, it can be compactly represented using another
the data and the fit. The intuition behind using thisquare) matrixB. Second order central differences
criterion is that it not only penalizes a bad fit (large MSH)_aplacian) are used here to penalize the second deriva-
but also penalizes the number of segments (model cotire of the underlying function. The derivative at each
plexity), thereby providing a safeguard from overfittinggrid node can be expressed as a linear combination of
The optimization problem is solved with < B < 10 its four neighboring grid nodes. The following least-
and the besB is chosen to minimizAIC. Finally the squares optimization problem can be used to solve for
SWV map for every image plane is filtered using the unknown values on the grid:
4mm X 2mm median fiIter_ tp remove ar_wy outliers. minimize || Ax — bHQ n nHBXHQ @)

The image plane containing the partially ablated re- x
gion is also imaged using a commercial Supersonkheren > 0 is a regularization parameter that controls
Imagine (Aix-en-Provence, France) scanner using ttiee amount of smoothing. Fortunately, this problem has
ShearWave™ Elastography mode. SWV estimates arelosed form solution given by:
gfiigiigilggnl.?ms placed in the three different regions x = (ATA + BTB)"'ATb. 3)

4) C-plane Function ApproximationSWV estimates The aforementioned problem setup is closely related
on each C-plane are obtained from a second functitm the idea of “Tikhonov regularization” for ill-posed
approximation routine. Fid.]2 also illustrates a set of @roblems|[[47, Ch. 8]. Explicit computation of the matrix

_- Noisy TTP

TTP (arbitrary units)
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OCV score vs. log(n)

inverse in [(B) should be avoided in practice. For the 0.
present setup, each row & and B contain at most
four and five non-zero entries respectively, and the
matrix in the parentheses inl (3) is sparse, symmetric and  ;
block diagonal which can be efficiently inverted using
sparse factorization algorithms [44]. This also bypasses *#f
any computational issues with large matrix dimensions
thereby allowing use of fine reconstruction grids.

If the smoothing parametey is chosen arbitrarily, 0.5}
larger values will force the final fit to be closer to
the null space of the penalty function which induces
smoothness, whereas small values will result in a more
undulating fit. However an objective method for selecting i
this parameter is necessary for studying reconstructieig. 5. OCV plot vslog(n). The minimizer in this case is
quality using summary statistics like the mean and stagpproximatelyn = ¢~°.
dard deviation calculated from regions of interest in the
reconstructed image. For this study, an automatic method
called leave-one-out ordinary cross-validation (OCV) i&uality of this algorithm, a Monte Carlo simulation
used to circumvent any user induced variability fror@xperiment was performed using a single C-plane.
different values ofy. In this method, the fitting routine sing the same test function as above, synthetic data is
is repeatedly run by excluding one data point at a timgnerated with 4, 6, 12 and 16 concurrent radial lines
and calculating the OCV score function given by:  ith 80 equidistant samples along each line. Gaussian

0.2+

01F

M noise for different signal to noise ratios (SNR) was added
OCV(n) = 1 Z@k — bp)? to simulqte measgrement errors. Since the maximum
=1 test function value id, SNR is defined a80log;(1/s)

wheres is the standard deviation of simulated Gaussian
noise. This noisy data was processed with the SOUPR
algorithm to reconstruct C-plane function valugg:, y)

where M denotes the number of data pointig,denotes
the knowndata value at a skipped data point locatign
and b, denotes the valupredictedby the optimization on a100 x 100 grid in the domain—2 < z,y < 2

th H = ) = <&
procedure Whe_n all but the data point are _used 0 Reconstruction mean squared error was calculated using
solve [2). A grid search is then used to arrive at the1 100 100 o902 4i—202 diio02 4i—202) |2
choice of n that minimizes this score function. Therr 21 '21 ( S5 L5 )—f( et 5 )‘ :

. . . 1=1)=

smoothing parameter chosen in this manner also hagere ‘the scaling and shifts ensure that the functions
desirable statistical property of minimizing the CrosSy and f are evaluated in the domain2 < z,y < 2.

validation score which is an unbiased estimator of thg,is simulation was repeated 10,000 times. Results are
mean squared error risk [48, Sec 5.3]. Example C-plaggown in Sectiof TIEA.

reconstructions with three different valuesodire shown
in Fig.[4. These plots were generated using a test function

of two dimensions;f(z,y) = 1 whenz? + 4% < 1 (unit D. Data Analysis
circle centered at the origin), and zero otherwise, with
the domain-2 < z,y < 2. Gaussian noise was added t
this function to simulate measurement errors in the sh
wave velocity and registration errors due to misalignme
of the image plane angle. The function values we
then imputed on a grid usingl(3). The “correct” valu
of n for this case was found by minimizin@CV(n)

The quality of 3D reconstructions was gauged by
%alculating the contrast (C) and contrast-to-noise ratio
e’,rNR) for pairs of regions in the TM phantom. In
bnventional 2D elastography, these statistics are cal-
Culated over carefully chosen regions of interest (ROI).
®or the 3D case, the same idea is extended here by
- . _ _ choosing parallelepiped shaped ROIs, with lateral and
shown in Fig.[5. In the interest of processing time, elevation dimensions of mm each andl0 mm axially.

was estimated (_)nly once per dataset using t_he C'plaﬂ‘?ese statistics are presented in decibel units using the
at half the maximum depth. It can be re-estimated f%llowing formulas [40], [49]:

every C-plane if desired.
In order to better understand the effect of noise and 1
. . . C =20 loglo —
varying number of image planes on the reconstruction 12
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n too small - undersmoothing n too big - oversmoothing n just right - cqrrect smoothing
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(a) Under-smoothing (b) Over-smoothing (c) Correct smoothing

Fig. 4. This figure shows the effect of using different valaéthe smoothing parameter in the fitting procedure applied to simulated
noisy data. Whem is too small, the resulting fit follows the noise as seen in\{d)ereas ify is too big it causes over-smoothing as seen

in (b). The correct smoothing parameter value strikes anirfa@” balance as seen in (c). This value is chosen to mirentie OCV score
plotted in Fig[5.

o3  m=ee 4 planes
, 6 planes ’ —— PAR/BKG
50.25 —a— 12 planes
F . —— 16 planes o INC/PAR 1
g 0.2r ... | I A [ INC/BKG
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=01 | g4
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05 10 15 20 2
SNR
1 L L L
Fig. 6. Mean squared reconstruction error (MSE) from siteala 0 5 10 15 20
data at different noise levels and varying number of imagmes. Number of imaging planes
The reconstruction error is largest when only 4 image planesised. (a) Contrast
No significant improvement is obtained by increasing the Ineinof
planes from 6 to 16, as seen from the overlapping errorbansndr 25 ‘
the MSE values. PAR/BKG
o, INC/PAR |
we INC/BKG
and ) s |
2 - St
CNR = 20logy, <M> . =
o1+ 03 Z |
. o
where . and o respectively denote the mean and the
standard deviation values of the SWVs calculated over 0.5¢
each ROI and the subscripts indicate two distinct media.
The mean and standard deviations over 5 independent 00 5 1‘0 1‘5 20
datasets were obtained after converting to dB. Number of imaging planes
(b) CNR
[1l. RESULTS
A. Simulations Fig. 9. Plots of (d) Contrast arjd [b) CNR as a function of the

. . ‘number of imaging planes. Contrast and CNR plots are forethre
Results of Monte Carlo simulations are shown iBiferent pairs of regions. (BKG=background, PAR=paljiablated,

Fig.[8. Note that the reconstruction error decreases witic=inclusion)
increasing SNR, irrespective of the number of image
planes used. In all cases the reconstruction error was
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TABLE |
SHEAR WAVE VELOCITY ESTIMATES

# imaging planes

background

partially ablated

inclusion

4 0.7642 £0.0722  1.0106 £0.0218  1.3264 £ 0.1039
6 0.7454 £0.0432  1.0205 £0.0195  1.3357 £ 0.1395
12 0.7623 £0.0612  0.9947 +0.0251  1.3412 £ 0.1007
16 0.7608 £0.0673 0.9814 £0.0256  1.3324 £ 0.1019
SSi 0.9 £0.07 1.1 £0.05 1.2 £0.03

Values of SWV (in m/s) for the three regions of interest amaih The number
of imaging planes used for 3D reconstruction is varied frota 46. The mean
and standard deviations were calculated over 3D paraipedpshaped ROls.
For comparison, measurements from the commercial Sugersoagine (SSI)
ShearWave™ Elastography imaging mode are also shown. Natdhe SSI
measurements were obtained using conventional 2D ROIs @rdgna single
imaging plane with the partially ablated region in view (Efg.[12).

(m/s)

Depth (cm)
Depth (cm)
:
Depth (cm)
Depth (cm)

2
Width (cm)

2 2
‘Width (cm) Width (cm)

Widthz(cm)
@ (b) (c) (d)

Fig. 7. Ultrasound B-mode image and respective shear wdeeitye(SWV) images are shown. Note the clear visualizatbthe partially
ablated region seen on B-mode in (a) and in the shear waveeimlaigined using the piecewise linear fitting algorithm ih @-mode (c)
and SWV reconstruction (d) for an image plane not includihg partially ablated region are also shown for comparisackBcattered
intensity was varied in the phantom to visualize normalatgsl and partially ablated areas in the B-mode referencgasa

(m/s) (m/s)

’ - 25 ‘
” \ 2 -
5 .

1.5 S

[=9
1 8 )
1 3 ’

2
Width (cm)

Depth (cm)
&
Depth (cm)

2
Width (cm)

2
‘Width (cm)

2
Width (cm)

(a) 4 imaging planes (b) 6 imaging planes (c) 12 imaging planes (d) 16 imaging planes

Fig. 8. Example C-plane reconstructions of shear wave itglet an axial depth o2.8 cm with different number of imaging planes.
Observe that as more planes of data are introduced, thebiiyiand finer detail in the boundary increases, and thee€®itspoke” artifact
becomes less pronounced.

largest when 4 image planes are used. On average, BhePhantom Data

16 plane case gives the best reconstruction accuracy, but

the error bars overlap considerably when the number ofThe reconstructed SWV maps for two of the imaging
planes is 6, 12 or 16. This suggests that for the ideal cadanes over which radiofrequency ultrasound data loops
of a perfectly radially symmetric inclusion, increasingvere acquired are shown in F[d. 7. SWV reconstructions
the number of image planes beyond 6 does not leadwere performed by applying piecewise linear fitting to

any significant improvement in reconstruction quality. the raw TTP data as illustrated in Fig. 3. The first image
plane passes through the partially ablated region which
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can be visualized in both the B-mode and the SWV
reconstruction while the second plane is aligned such
that the partially ablated region is not seen. Note that 4
these regions of varying stiffness are not as easily visible
in real tissue using a B-mode scan. But they can be
easily seen here because the TM phantom material was
designed to have different acoustic echogenicities for 1
different regions. C-plane slices using different numbers
of angular planes between 4 and 16 are shown in[Fig. 8. Lo
The partially ablated region can be seen on the right side — ('Cr;” o Length (cm)
of the inclusion in all the four C-planes. 3.5

The estimated SWVs shown in Talble | do not change (a) 3D render
significantly as the number of planes in the sheaf was
changed. This is because the structure of the phantom i m/s
quite symmetrical, so on average the measured SWVs di 3
not vary when new planes of data are added. The reg \ ‘
ularized function estimation framework described here
is also related to classical statistical learning theory:
the choice ofy is related to the so called bias-variance
tradeoff [50, Ch. 2, Sec. 2.2.2]. A small value mfwill
produce an undulating fit, i.e., an estimator with low bias
but high variance. On the other hand, larger value) of
will reduce the variance and increase the bias. AIC in 0
the piecewise linear fitting algorithm and regularization
in the optimization problem are both ways to trade off

Height (cm)

3.5

1.75

Height (cm)

il
/

75

>\
175

some variance at the cost of introducing a bias in the width (em) 35 ° Length (cm)
estimated function. As a result of the smoothing, the o
SWV estimates shown in Tab[@ | are lower than the (b) slice view

true values for the phantom calculated using the known 0 0 4 v e inolus e
material sifness (toung's modulus). Bur they agreB 1 ) %0 eersiucts e o e v Lo
quite well with the SWV estimates obtained using SSe 3p volume with SWV shown in m/s.
shown in the last row of the table. Moreover, delineation
of ablated and partially ablated regions, which is of
paramount importance, can be easily seen in the C-pldi@nes was increased.
images. The full 3D reconstruction using 6 imaging planes is
There are several tradeoffs associated with increasffPwn in Fig.LID. This is created by stacking together
the number of |mag|ng p|anes for 3D reconstruction. Adhe individual C-planes. This 3D render should be inter-
ditional planes would require significantly more data agreted with caution because only an apparent estimate
quisition and processing to obtain SWV reconstruction@f the shear wave velocities is obtained. It should not
A quantitative evaluation of improvements obtained bjye misconstrued as a solution of a full 3D shear wave
increasing the number of imaging planes is therefopsopagation inverse problem. Fig.]10(a) is obtained by
necessary to determine a reasonable number of plaH@gsholding and is for visualization only. Numerical
needed for fast imaging. Image quality metrics calculatéformation is shown in the three-slice view in Hig] 10(b).
over 5 independent datasets are shown in Eig. 9. The
largest contrast of about 5 dB in Fig. 9(a) is obtained IV. DiscussIoN
when comparing the soft background with the hard This paper presented a novel technique for acquiring,
inclusion, also imaged with 6 imaging planes. A highegirocessing and displaying a 3D rendering of the SWV
CNR of 1.5 dB is obtained using 6 imaging planes in thaistributions for ultrasound shear wave elastography
sheaf as illustrated in Fif. 9(b). As one would expect, thesing a stack of C-plane reconstructions. The C-plane
highest contrast values were seen between the inclusigisualizations of the ablation slices can also be utilized
background regions. In general, there is a decreasiogclearly delineate ablation boundaries. The sheaf of
trend in all image quality statistics as the number afitrasound planes reconstruction (SOUPR) algorithm is
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presented and validated using TM phantom experiments
for EVE.

A piecewise linear fit was used in this paper to accen-
tuate change points with the goal of improving boundary
delineation in the reconstructed SWV maps on individual
scan planes. Other noise filtering methods such as least
squares linear or polynomial fitting _[61] or Kalman
filtering [52] can also be used. The idea of Tikhonov
regularization for smooth function approximation was
previously applied to displacement estimation by Rivaz
et al. [63]. In contrast, this paper uses regularized
optimization to reconstruct smooth shear wave velocity |
maps from undersampled grids. It is worth noting that the 1 > - 3 0
second order finite differencing regularization term used Width (cm)
in this work can be replaced with first or higher order
derivatives or any other types of pena]ty functions thﬁtg 11. This figure shows various structures and artifatsgnt in

. . . SWV image plane. The red arrow points to the stiff ablaggibn
promote smoothness. The key requirement is the ab”}atyd the black arrow points to the partially ablated regidmer€ is a

to express the penalty as a linear operation so that {8 velocity artifact near the needle shown by the blue aretvthe
formulation in [2) can still be used. center. There are high velocity artifacts close to the edgeesimage

The contrast stays almost constant as the numbersbq;wn with green arrows in the j[op right and bo.ttom left cqsnéhe
planes in the sheaf was increased. The CNR qual\ﬁﬁilgc?zﬂvev Poeﬁ:;hneezodﬁec’f the image plane points to a highofty
metric shows a decreasing trend as the number of '
planes is increased. This may be a side effect of the
smooth C-plane fitting algorithm. The fitting algorithnthe shear wave pulse takes some time to accelerate to its
approximates a smooth surface in regions where thenaximum speed after the needle is vibrated resulting
are no data points. With fewer number of planes there perceived low velocity close to the needle source.
are larger regions with no data points, resulting in Bhis artifact may not be a serious hurdle in application
visually smoother fit which corresponds to better CNBecause regions immediately adjacent to the needle are
in the image. On the other hand, when the number oértainly ablated; confirming the location of the outer
image planes is increased, the voids are much smallssundary of the ablation is more crucial. Results in a
Therefore the first term in the optimization problelmh (2ecent paper by Deffieuet al. [56] suggest that the
exerts greater influence forcing the surface fit to appaarcertainty in measuring higher shear wave velocities is
more undulating. To enable fairer comparison betwearherently higher. This indicates there is a lower limit to
reconstructions performed with different number of imhow accurately SWV maps can be reconstructed inside
age planes, these quality metrics may have to be modifibeé stiff inclusion.
by accounting for these effects. A visible side effect of the sheaf imaging strategy

Various artifacts can also be seen in the SWV majsthe “wheel spoke” artifact seen in Figl 8, especially
and the C-plane reconstructions. These are summarizdten using fewer planes in the sheaf. These appear as
in Fig. [11. High velocity artifacts appear above antchdial streaks emanating from the center of the C-plane
below the inclusion because the assumption of purely latrd coinciding with the radial locations of the image
eral shear wave propagation may not hold those regioptanes over which ultrasound echo data was acquired.
Removal of such artifacts has been studied previoudiie smoothing parameter can be manually tuned to get
[54] and can be incorporated into the 3D reconstructigitd of such artifacts—a larger value of will smooth
algorithm. High velocity artifacts are also seen closeut such variations. In a commercial system, there may
to the edge of the image plane due to limited imaginge regulatory hurdles to allowing the user to control the
aperture in those areas. Methods for removal of artifaatalue ofy, but it may be possible to include an additional
due to wavefront distortion and reflection have begreset akin to smoothing and edge enhancement which
discussed previously [10], [55] and have the potential t® available on almost all ultrasound scanners.
improve reconstruction quality for the 3D case too. Low The phantom experiment setup in this paper was
velocity artifacts seen in areas adjacent to the needlesigned to mimic a liver ablation procedure. In other
have been observed in previous EVE studies [8] amelal world situations, it may be more challenging to
require further investigation. The authors conjecture thalign the needle along the axial beam direction of the
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This is because the shape of the inclusion was mostly
vserdon symmetric about the needle, (except for a small ir-
' regularly shaped partially ablated region). This was
also confirmed by the simulation experiment that was
WiNgh & ¢ Y specifically used to mimic the situation in the phantom
‘ . e & experiment. Greater number of image planes may be
needed if the inclusion is more irregularly shaped. More
complex geometries can be simulated ahead of time
using the method described in Sectlon 1ItC4 to decide
on a suitable number of image planes in the sheaf as part
of pre-ablation clinical planning.

B
Gen/Med/H

Fig. 12. A “bronze standard” SWV image of the phantom indusi 1 N€ _Ioc_:ation gnd num_ber of angUI_a'_' planes can also

corresponding to the same imaging plane of Eig. 7(a). Thiasgen be optimized with the aim of minimizing the number

V‘k’]as ?}Cqu”ed using a SUPergonif 'magirl‘e U'”asﬁundbsca'“ig:g of planes required for effective 3D reconstruction while

the shear wave imaging mode. (Original image has been p - . . .

and rearranged to fit) I3_“‘?1aX|m|zmg '_the processing speeo_l. This WI|| also allow
implementation of 3D reconstruction algorithms on low
end commercial ultrasound systems which may not be

transducer. In situations where the needle is at an anﬁﬂi‘“pped with sufﬁuent_ processing power or modern
to the axial ultrasound beam direction, 2D displaceme@Phical processing units (GPUs). Minimization of the
tracking algorithm can be used. The component of the@\émber of planes will enable fast.er dgta vaU'S't'_On
displacements parallel to the needle can be extrac processing for eventual rgal—tlme |mplementat|on
and TTP values along lines perpendicular to the nee(ﬂE_SD SWV vc_)lume reconstructlpns. Adaptive or non-
can be calculated in steps 2 and 3 of Secll-_@,n'fo”_n sampllng of complex regions, for examp!e those
respectively. In case of physical constraints on placifgcluding the simulated, partially ablated regions as
the transducer around the needle, it may be impossi§&Wn in FigsLi7d8 and regions near large vessels during
to obtain the complete sheaf, resulting in voids in tH8 VivO implementations, will have to be evaluated to
dataset. But a partial volume reconstruction can stffetermine |f.th|s. can fL_thher Improve delmea_tlon. Data
be obtained using the same algorithm presented in tG&" P& acquired in multiple passes where the interpolated
paper, using only that part of the fine grid where dafgsualization from an earlier pass provides feedback for

points are present. The four step decomposition offet@MPling critical locations in the volume, enabling an
good flexibility for tuning the details of each signafdapPtive sampling approach for improved delineation.

processing block for specific applications. For exam-

ple, some commercial ultrasound scanners already offelAlthough the sheaf pattern of acquisition is naturally
imaging modes to map shear wave velocities (either &gited to the geometry of the EVE setup, an inherent
point estimates or over large regions) irrespective of thignitation of this method is that every image plane must
alignment of the image plane with respect to the needigntain the needle to enable time of arrival estimation.
In such systems, it will be convenient to incorporate ong a sheaf, data samples progressively get sparser away
additional block for step 4 at the end of the existinfom the needle. This shortcoming can be addressed by
signal processing chain to generate 3D volume mapssampling extra planes in the sheaf so that a certain fine

It is also useful to compare the SWV image plansample spacing is achieved at a predetermined distance
reconstruction with a “bronze standard” image acquiretvay from the needle. Alternatively, if a specific ROI
from a commercial Supersonic Imagine ultrasound scamas already been located, imaging planes that are not uni-
ner with shear wave imaging capability. Fig.] 12 showsrmly spaced in angle can be employed; finer spacing in
one image plane of the phantom with a SWV overlay aspecific regions may provide better reconstruction quality
B-mode. The image plane is identical to the one shoven those locations. Knowledge from earlier iterations of
in Figs.[7(a) and (b). Note that high velocity artifactshe reconstruction algorithm may also be incorporated
can be seen at depths greater tRdicm. in the interpolation procedure, by reconstructing only

Results in this paper indicate that 6 planes in a shqadrts of the full volume that are known to contain
are sufficient for fast reconstruction in the particulaainy interesting features, either automatically or with the
TM phantom used, both qualitatively and quantitativelyntervention of a clinician.
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V. CONCLUSION

Monitoring tumor ablations to determine the spatial

extent of treatment is fundamentally a 3D problem. 3f1)
imaging is essential to determine if the entire tumor and
surrounding margins have been successfully ablated to

ensure favorable outcomes from this minimally invasive

procedure. Current 3D ultrasound imaging using wobbler
transducers are inefficient in depicting ablation volumes
as imaging planes are collected in a raster fashi

By exploiting the axis of symmetry about the ablatio

needle, the SOUPR algorithm developed in this paper

provides good 3D visualization using significantly fewer

planes and faster 3D reconstructions. Various ima
quality statistics evaluated using independent datas
indicate that the SOUPR algorithm provides good con-
trast between the tumor and surrounding softer regions.
Moreover, the algorithms presented in this paper c?l
be easily extended to process other types of data (su
as strain) to produce similar C-plane reconstructions for

visualization of ablated regions.
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