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Ultrasonic tracking of shear waves using a particle filter
Atul Ingle

a)Q1
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin

53705 and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705

Chi Ma

b),c)

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705

Tomy Varghese

d)

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Department

of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705

(Received 6 February 2014; revised 17 August 2015; accepted for publication 10 October 2015;
published XX XX XXXX)

Purpose: This paper discusses an application of particle filtering for estimating shear wave velocity
in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical
value as they help di↵erentiate sti↵er areas from softer areas which is an indicator of potential
pathology.
Methods: Radio-frequency ultrasound echo signals are used for tracking axial displacements and
obtaining the time-to-peak displacement at di↵erent lateral locations. These time-to-peak data are
usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising
problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless)
time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain
a fit that is optimal in a minimum mean squared error sense.
Results: Simulation results from synthetic data and finite element modeling suggest that the particle
filter provides lower mean squared reconstruction error with smaller variance as compared to standard
filtering methods, while preserving sharp boundary detail. Results from phantom experiments show
that the shear wave velocity estimates in the sti↵ regions of the phantoms were within 20% of
those obtained from a commercial ultrasound scanner and agree with the estimates obtained using
a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear
wave velocity maps were within 10% of those obtained from B-mode ultrasound images.
Conclusions: The particle filtering approach can be used for producing visually appealing SWV
reconstructions by e↵ectively delineating various areas of the phantom with good image quality
properties comparable to existing techniques. C

2015 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4934372]

Key words: ultrasound, shear wave elastography, electrode vibration elastrography, particle filter

1. INTRODUCTION

The major goal of shear wave elastography is to distinguish
between various tissue structures based on local variations
in sti↵ness. With the assumption that tissues are elastic and
incompressible and ignoring any high frequency dispersive
e↵ects, it is possible to relate shear wave velocity (cs) and the
elastic shear modulus (G) via the relation

cs =

s
G

⇢
, (1)

where ⇢ is the density of the medium. Ignoring the e↵ects
of viscosity, cs remains constant as a function of frequency.
It is also worth noting that the Young’s modulus (E) of an
incompressible elastic material whose Poisson’s ratio is close
to 0.5 is related to its shear modulus by

G ⇡ E/3. (2)

In ultrasound shear wave elastography, the shear modulus
of the underlying tissue is estimated using ultrasound echo
data acquired at high frame rates (usually with plane wave
insonifications) on a clinical scanner. Various methods can
be used for generating shear wave displacements in tissue—
the most common ones being acoustic radiation force1,2 Q2
and external mechanical excitation such as an actuator.3–6

There are potentially unlimited configurations and methods
for generating shear waves using mechanical excitation
depending on the apparatus and the clinical application. In
this paper, electrode vibration5,6 is used for inducing shear
waves with the target application being real-time monitoring
of tumor ablation in the liver. This technique is called
electrode vibration elastography (EVE). An advantage of
EVE in monitoring liver ablation is that shear waves can be
generated in vivo by vibrating the same radio-frequency (RF)
electrode or microwave antenna that is being used for the
ablation procedure. Compared to acoustic radiation force type
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techniques, electrode vibration can be used to obtain larger
vibration amplitudes that can be tracked over longer distances
in tissue.

The next step in shear wave elastography involves tracking
these shear wavefronts in the underlying medium using
ultrasound displacement estimation techniques. It is possible
to calculate SWV by directly inverting the wave equation.3,4,7

This method involves calculation of second order temporal and
spatial derivatives of displacement estimates obtained from
any standard ultrasound-based motion tracking algorithm.
However, this method is fraught with noise, notwithstanding
the use of standard noise reduction techniques such as
median filtering for removing outliers and mean filtering for
smoothing.

Alternatively, the location of these shear wavefronts as a
function of time can be used for estimating SWV and hence
the shear modulus using Eq. (1). For tissue-mimicking (TM)
phantom experiments, the density is assumed to be equal
to that of water (1000 kg/m3). As is the case with most
ultrasound based systems, presence of noise and outliers in
raw ultrasound data must be mitigated to attain su�cient
signal-to-noise ratios (SNRs) necessary for successful clinical
application of this method. This paper gets to the crux of this
issue by proposing a model-based denoising algorithm for
SWV reconstruction from noisy ultrasound displacement data.
The propagating shear wave consists of a single pulse which is
tracked through the imaging plane by recording the time taken
for the peak of this pulse to reach di↵erent lateral locations.
This process is repeated at di↵erent depths in the imaging
plane. These data are referred to as time-to-peak (TTP)2 or
time-of-flight data.8

Zheng et al.

9 apply harmonic excitation of a known
frequency to produce a sinusoidal displacement shear wave
in the medium of interest using ultrasound radiation force.
The phase of this sinusoidal motion is detected using a similar
principle as Doppler ultrasound and SWV is estimated from
this phase information. A Kalman filter is used for obtaining
optimum phase estimates from noisy ultrasound echo data.
As opposed to the method of tracking small shear wave
pulses, this method uses continuous sinusoidal excitation
which allows characterization of the SWV as a function of
frequency. Replicating this method for shear waves traveling
through disparate media can be di�cult as the vibrations are
extremely small and may fall below the noise floor when
traveling through interfaces.

McLaughlin and Renzi10 use a correlation based pattern
matching method to locate a shear wave pulse of a known
shape at di↵erent locations in the medium. The issue of noise
smoothing is handled implicitly by use of the Eikonal equation
thereby avoiding derivatives of noisy data and circumventing
the issue of solving an ill-posed inverse problem. In order
to account for the phenomenon of pulse shape broadening,
a penalized optimization procedure with an improved cross
correlation based method for estimation of arrival times was
used in a breast elastography application by Tanter et al.

11 and
also in another recent paper by Klein et al.

12

Various function fitting and denoising methods have been
applied to the problem of filtering noisy TTP information.

Palmeri et al.

2 apply linear regression followed by statistical
goodness of fit criteria. Wang et al.

8 apply the random sample
consensus (RANSAC) algorithm to address the issue of
outliers. They model the TTP curve as a linear function of the
spatial coordinates with the coe�cients as free parameters to
be estimated. The RANSAC algorithm proceeds by randomly
drawing subsets of the full dataset. Next, it calculates the
parameters of the hypothesized linear model using a least-
squares (LS) fit and then identifies and removes possible
outliers at each iteration.

Rouze et al.

13 proposed using the radon sum transform
for estimating SWV in a single medium. Using a 3D map of
lateral location, time, and displacement, the algorithm extracts
a trajectory in the lateral location vs time plane that gives the
maximum sum of displacements. This trajectory is assumed to
be the path of propagation of the shear wave. Intuitively, this
method gives the best fit line along the locations of the displace-
ment peaks thereby smoothing out the e↵ect of noise. Zhao
et al.

14 analyze the e↵ect of ultrasound imaging system param-
eters such as transducer type, frequency, and imaging depth
on SWV estimates obtained using acoustic radiation force. A
least-squares fit is used for the TTP data to estimate SWVs.

In a preliminary study, Bharat and Varghese5 discuss the
phenomenon of change in the slope of the TTP profile when
a shear wave travels through an interface between di↵erent
media. A least-squares fit is applied to the noisy TTP data
prior to calculating the slope of the curve at various lateral
locations for estimating SWV and locating any slope change
points. It is important to develop algorithms to automatically
and reliably detect these slope change locations of the TTP
curve as they are indicators of the presence of a transition
boundary between regions of di↵erent sti↵ness. The present
work is an attempt in that direction.

A theoretical analysis of the complete signal processing
chain employed in a standard ultrasound based SWV imaging
system was presented in a paper by De�eux et al.

15 Using
methods from classical estimation theory, they derive a
Cramér–Rao lower bound on the variance of any unbiased
estimator of shear modulus when the shear wave propagates
in a homogeneous linearly elastic medium with no interfaces.
Tracking the propagation of a shear wavefront through mul-
tiple media is more challenging due to uncertainty regarding
wave velocities within di↵erent media and exact locations
of interfaces. As a result, direct application of statistical
function fitting techniques provides no theoretical guarantees
on detecting the interfaces and slopes accurately. From the
point of view of TTP data, this problem is equivalent to fitting
a continuous piecewise linear function with unknown slopes,
unknown breakpoints, and unknown number of segments.
This paper attempts to fill in this missing piece in algorithm
development for tracking of shear waves propagating via
multiple interfaces.

As opposed to ad hoc application of function fitting
and smoothing techniques, the algorithm presented here first
models the TTP data for a shear wave pulse propagating
through multiple interfaces and then uses a stochastic filtering
technique called the particle filter to estimate the SWVs that
best fit the model.
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2. THEORY AND ALGORITHM
2.A. Stochastic hidden Markov model

A shear wave can be assumed to travel with a constant
speed as long as it propagates in the same homogeneous
medium, but the speed changes when it enters a dissimilar
medium via an interface. Therefore, to a first approximation,
an ideal TTP curve should appear to grow linearly with a
constant slope, except at interfaces, where the slope should
abruptly change to a new value. Under this model, the slopes
of individual segments in the noiseless TTP data can be used
for obtaining SWVs in the respective media and the locations
of joint points can be used to identify boundaries between
dissimilar materials. Ultrasound imaging at high frame rate
can be used for tracking axial tissue displacements as a
function of time from which the TTP can be computed for
various lateral locations. These signal processing steps leading
up to the TTP estimates introduce some noise, which will be
assumed to have a Gaussian distribution. A stochastic hidden
Markov model can be formulated to represent the physical
phenomenon of the traveling shear wave together with this
noisy TTP measurement.

The following notation is used to describe the hidden
Markov model. Let

Zn be the actual (noiseless) value of the TTP curve at a
lateral location n,

Yn be the noisy measured value of the TTP curve,
Wn be i.i.d. Gaussian noise with density N (0,�2),
Sn be the most recent slope value of the curve,
Xn be a continuous valued uniformly distributed random

variable,
Mn be a 2D “state variable,” (Zn,Sn),
Bn be a Bernoulli random variable with P(Bn = 0)= p and

P(Bn = 1)= 1� p for some 0 < p < 1.

Individual components of a vector are denoted using super-
scripts. For instance, R(l) is used to denote the lth component
of a vector R. The shorthand notation Rl :l+m is used to denote
the set of vectors {Rl,Rl+1,. . .,Rl+m}. It is assumed that the
TTP data are obtained at equally spaced sampling points along
the lateral dimension. Hence, it is possible to normalize the
distances to 1 unit/sample.

The relationship between these random variables can now
be summarized as follows:

Zn+1= Zn+Sn, (3)

where

Sn+1=
8><>:

Sn if Bn = 0
Xn if Bn = 1

and

Yn+1= Zn+1+Wn+1. (4)

These equations model the presence of interfaces in a
probabilistic manner. At any lateral location, the shear wave
continues to propagate in the same medium with a probability
p or encounters an interface with a probability 1� p and the
slope switches to a new values chosen uniformly randomly

over some reasonable interval [LB, UB]. In most practical
scenarios, the value of p can be chosen to be close to 1 because
one expects to propagate through very few interfaces.

This hidden Markov model that generates the noisy TTP
data can be cast into this standard form with a “state evolution
equation” given by

Mn+1=

266664
M

(1)
n +M

(2)
n

(1�Bn)M (2)
n +BnXn

377775 (5)

and an “observation equation” given by

Yn =M

(1)
n +Wn. (6)

The dependence between various random variables
involved in this model is pictorially represented in Fig. 1.

2.B. Particle filter

Particle filtering (PF) is a Monte Carlo technique that
calculates the approximate probability density function of
the state variables conditioned on observed data. This is
achieved by traversing all the data points sequentially and
updating the density estimate based on an application of
Bayes’ rule. Particle filtering methods have been applied in
the context of quasistatic elastography16 and for sequential
tracking problems in medical imaging.17,18 The present work
is, to the best knowledge of the authors, the first time a
particle filtering approach has been used for inverse problems
in dynamic elastography. Detailed description of various
embellishments in the basic algorithm and implementation
issues are discussed in a tutorial article by Arulampalam
et al.

19 Some practical implementation issues and simulation
results with real world examples are discussed in the paper
by Gilks and Berzuini.20 Development of the theory behind
optimality of particle filters for hidden state estimation when
the noise distribution is not Gaussian can be found in the paper
by Bergman et al.

21

For the present problem, a particle filter is used to obtain
maximum a posteriori estimates for the states {M1,. . .,MN}

Fig. 1. A pictorial representation of the relationships between various ran-
dom variables (input, hidden states, and output) of the hidden Markov model
is shown here. Every hidden state Mn has two components, and the observed
valuesYn are obtained after addition of i.i.d. zero mean Gaussian noise to the
first component. The second component is the local slope value Sn which
obeys a Markov structure. The slope stays constant with a probability p and
changes to a new uniformly randomly chosen value with a probability 1� p;
the uniform random variable Xn acts as an input to the model.

Medical Physics, Vol. 42, No. 11, November 2015
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conditioned on the data {Y1,. . .,YN}, where N is the number
of data points. Suppose that the algorithm is at the kth data
point out of the N available observations. The density of the
current state conditioned on all data points observed so far can
be expressed approximately as a weighted sum of Dirac-delta
functions as

p(Mk |Y1:k)⇡
NsX

i=1

!i
k�(Mk�M

i
k), (7)

where Ns is the number of points used in the discrete
approximation, {M

i
k}

Ns
i=1 is a set of random points in the state

space, and {!i
k}

Ns
i=1 is a set of corresponding weights that

sum to 1. The number of points Ns is typically quite large
(⇠103–104) so that the discrete approximation is close to the
actual continuous density function.

For the Dirac-delta approximation to hold, each random
point M

i
k must be drawn according to the density function

p(Mk |Y1:k). However, since this probability density function
is unknown, a special technique of importance sampling19,20

is used to generate these points. The points {M

i
0:k}

Ns
i=1 are

generated using the sampling density p(M i
k |M

i
k�1) which leads

to the weight update equation given by19

!i
k =!

i
k�1p(Yk |M i

k). (8)

Additionally, a procedure called “resampling” is used to
generate a modified particle set in such a way that a majority
of the sample points remain concentrated in high probability
density regions. A regularized particle filter implementation
is used in this paper where a random perturbation is added to
each point after resampling. Under certain assumptions,22 the
optimal choice for these perturbations is the Epanechnikov
kernel.23

The expected value of the current state can be obtained
from the density estimate as

E[Mk |Y1:k]=
NsX

i=1

!i
kM

i
k . (9)

Moreover, the variance of this estimate can also be calculated,

Var[Mk |Y1:k]=E[(Mk)2|Y1:k]� (E[Mk |Y1:k])2 (10)

where the square is taken elementwise. This may be used in
practice to show a “standard deviation image” along with a
SWV map to give feedback on the reliability of the estimated
SWVs and thus can be of clinical value.

Better smoothing estimates may be obtained if the obser-
vations from the future are also incorporated into the current
state estimation step. This is done using a lookahead-window
smoothing method that waits for L samples into the future
before generating the current state estimate as

E[Mk |Y1:k+L]=
NsX

i=1

!i
k+LM

i
k . (11)

Choosing L to be very large has pitfalls of oversmoothing24

and wasting some data samples toward the end of the dataset.
As a further improvement, Doucet et al. also propose the
“fixed lag smoothing” algorithm24 which runs a backward

smoothing step to update the weights according to

!̂i
k =

NsX

j=1

!̂ j
k+1

!i
k p(M j

k+1|M
i
k)

NsX

l=1

!l
k p(M j

k+1|M
l
k)
,

for k = n�1,. . .,1 and !̂i
n =!

i
n. Note that this is computation-

ally more burdensome to implement in real-time applications
[because of the need to process and store N

2
s di↵erent values

of p(M j
k+1|M

l
k) at each k]. Therefore, this last equation is

only used in evaluation of the HMM approach in simulations;
the lookahead-window smoother is used for the experimental
data.

The complete algorithm is presented in pseudocode style
in the Appendix in Figs. 11–13.

3. MATERIALS AND METHODS
3.A. Design of ablation phantoms

The phantom based study involved data acquisition from
two TM phantoms with similar design but slightly di↵erent
mechanical properties.25 Both phantoms consist of a centrally
situated sti↵ ellipsoid in a softer background material which
simulates the presence of a tumor in cirrhotic liver tissue.
The sti↵ ellipsoid is intended to model an ablated region. An
irregular tumor structure whose sti↵ness was in between the
ablated region and the background material was attached on
one side of the ellipsoid. The phantom material is composed of
a dispersion of microscopic oil droplets in a gelatinous matrix.
The di↵erence in sti↵ness is mainly achieved by controlling
the proportion of oil in the material; a detailed discussion
about the design and properties of such phantom materials is
given in the paper by Madsen et al.

26 A stainless steel rod was
bonded to the center of the ellipsoid in order to mimic the role
of a RF electrode or a microwave antenna in an actual ablation
procedure. This rod was used for generating shear waves in the
phantom with the help of an actuator. A representative cross-
sectional view of the structure of both phantoms is shown in
Fig. 2(a). The gelatin block was 14⇥14⇥9 cm. This block was
placed in an open top 1 cm thick acrylic container. A layer of
sa✏ower oil about 2 cm deep was poured over the top surface
to prevent desiccation.

3.B. Finite element simulation model

One image plane of a sti↵ ellipsoidal inclusion embedded
in a soft background material was simulated using a finite
element model in ansys. This is similar to the schematic
shown in Fig. 2(a) without the irregularly shaped region. The
Young’s modulus of the inclusion was set at 55 kPa whereas
that of the background was set at 5 kPa. Both materials were
modeled to be perfectly linearly elastic and incompressible
with no viscosity. The needle was modeled using a stainless
steel rod firmly bonded to the ellipsoid, but free to slide along
the surface adjoining the softer background material. More
details about the model can be found in the paper by DeWall
and Varghese.6
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Fig. 2. A cross-sectional view (not to scale) of the two phantoms used for experimental validation is shown in (a). Both phantoms consist of a sti↵ ellipsoidal
inclusion embedded in a softer background material. The sti↵ region mimics the presence of completely ablated tissue, whereas the softer background simulates
unablated tissue. An irregularly shaped partially ablated region of intermediate sti↵ness is present on one side of the inclusion. A block diagram of the data
acquisition system is shown in (b). The needle is vibrated in a single pulse motion using an actuator operated in synchronization with the ultrasound scanner. RF
echo data are acquired from a linear array transducer.

3.C. Data acquisition system

Ultrasound RF echo data were acquired using an Ultrasonix
SonixTouch machine (Ultrasonix Medical Corporation, Rich-
mond, BC, Canada) and a software tool developed using the
Ultrasonix software development kit.6 The 9L4 linear array
transducer operated at a frequency of 5 MHz was used for
obtaining ultrasound RF echo data. Focussed transmit and
receive were used with a 30 mm focal depth and 45 mm
imaging depth for Phantom-1. An imaging depth of 50 mm
was used for Phantom-2. The transducer had a 6 dB bandwidth
of 33%, a transmit F-number of 2.6 and an acoustic pulse
duration equal to 1 transmit cycle of the operating frequency
of 5 MHz. The e↵ective line density was equal to the number
of elements, i.e., 128 lines over a lateral extent of 3.8 cm.

The shear wave pulse was tracked at five lateral locations
along the face of the transducer to get an e↵ective frame rate
of 2070 Hz. Individual shear wave pulses were generated by
vibrating the needle with a pulse shape of a half-sinusoid with
100 µm amplitude and 30 ms width. A single time-limited
pulse vibration allows localization of the shear wave in space
and time using the TTP approach. Pulses were generated
once per second to allow perturbations from the previous
pulse to decay to a negligible amplitude and hence avoid
simultaneous interfering waves. The needle was vibrated
using a piezoelectric actuator [Physik Instrumente (PI) GmbH,
Karlsruhe, Germany] that was attached to the stainless steel
rod as shown in Fig. 2(b). In order to synchronize data
collection and pulse generation, the PI controller was set up to
trigger the ultrasound scanner and the actuator simultaneously.

Additionally, SWV and Young’s modulus data were
acquired with a Supersonic Imagine Aixplorer scanner (Super-
sonic Imagine, Aix-en-Provence, France) which uses a
proprietary radiation force technique termed supersonic shear
imaging (SSI).27

Mechanical stress–strain testing can be used for direct esti-
mation of material sti↵ness. Samples of various regions in the
phantoms were tested using a Bose Enduratec ELF 3200 ma-
chine (Bose Corp., Eden Prairie, MN, USA). Each sample was

a cylinder with a diameter of 2.6 cm and a thickness of 1.0 cm.
The machine was programmed to apply an average compres-
sion of 2% in a low frequency (20 Hz) dynamic testing mode.

3.D. Data processing
3.D.1. Synthetic data

Synthetic ground truth data vectors consisting of 50 data
points each were generated with the parameters p= 0.85, 0.90,
0.95 and Xn chosen uniformly randomly in the interval [0,1].
Gaussian i.i.d. noise with zero mean and variances �2

= 0.01, 0.03, 0.06,0.16,0.40,1.00 was added to the data. The
particle filtering algorithm with a backward smoothing step
as described in Sec. 2.B was applied to 50 independently
generated data vectors. The mean squared error (MSE) be-
tween the estimated slope values and true slope values was
calculated for each vector using the formula 1/50

P50
i=1(Ŝi

� Si)2, where Ŝi is the estimated slope at data point i and Si is
the ground truth slope value. For comparison, the same noisy
data vectors were smoothed using two other methods: (a) 4th
order polynomial fit, (b) 10 point moving average (MA) filter,
(c) 10 point quadratic Savitzky–Golay filter, and (d) 15 point
cubic Savitzky–Golay filter. The slopes were then estimated
via finite di↵erencing and MSE with respect to the ground truth
was calculated using the same formula. The mean MSE and
standard deviation were calculated by repeating this procedure
on the 50 independent data vectors. The particle filter was run
with parameters Ns = 5000, NT = 10, and [LB,UB] = [0,1].
The p and�2 values were set equal to those used for generating
the synthetic data.

3.D.2. Finite element simulation data

Displacement profiles as a function of time for each pixel
in the image plane were exported from the finite element
simulation results. I.i.d Gaussian noise was added to this
ground truth data for a 20 dB SNR with respect to the peak
displacement (vibration amplitude). The displacement vs time
profiles were used to estimate TTP for each pixel. A frequency
domain low pass filter was used to reliably locate the peak. The
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Fig. 3. Frame-to-frame displacements are obtained from the RF echo data and TTP is estimated from displacement vs time profiles for each pixel in the imaging
plane. Displacement profiles for six di↵erent pixels using data from Phantom-1 are shown in (a). The six displacement plots correspond to pixels located at
lateral distances from 0 to 1.8 cm in increments of 0.3 cm and at a depth of 3 cm. A zoomed section of the displacement profiles is shown in (b). This noise
causes uncertainty in exact values of TTP which appears as noise in the TTP plot shown in (c). Two particle filter fits with p = 0.85 and p = 0.95 are also shown
overlaid on the noisy TTP. Note that the smaller value of p results in more “jumps” in the final fit as seen from the SWV estimates. The TTP values and frame
numbers are related via the imaging frame rate.

cuto↵ frequency of this low pass filter was chosen adaptively
by discarding all frequency components that were smaller than
10% in magnitude compared to the largest component in the
frequency spectrum. The location of the peak displacement
was estimated with subframe-number resolution using a 5-
point quadratic fit. The resulting TTP plots were analyzed
along lines of constant depth on both sides of the needle

using four di↵erent algorithms to estimate SWVs: (a) particle
filter from Sec. 2.B, (b) 10 point moving average followed
by finite di↵erencing, (c) 10 point quadratic Savitzky–Golay
di↵erentiator, and (d) 15 point cubic Savitzky–Golay di↵eren-
tiator. The particle filter was run with parameters Ns = 5000,
NT = 10, and [LB,UB]= [0,10], p= 0.98, and �2= 0.25. The
final SWV image was filtered with a 1⇥1 mm median filter.

Fig. 4. MSE of estimated slope values from three di↵erent noise filtering methods applied to randomly generated piecewise linear data. Simulated piecewise
linear data were filtered using three di↵erent filtering algorithms (pf = particle filter, poly = 4th order polynomial, movav = moving average 10 point window,
sg2 = Savitzky–Golay quadratic with 10 point span, sg3 = Savitzky–Golay cubic with 15 point span, raw = no filtering). Local slope values were estimated by
finite di↵erencing. MSE from 50 independent simulated data vectors is presented in this figure. The particle filter provided the lowest mean MSE. (a) p = 0.85,
(b) p = 0.90, and (c) p = 0.95.
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Fig. 5. SWV maps reconstructed from data obtained from the finite element simulation model are shown here. The top row shows images reconstructed using
a particle filter with parameters (p,�2)= (0.98,0.25) (pf), moving average 10 point window (movav), Savitzky–Golay quadratic with 15 point span (sg2), and
Savitzky–Golay cubic with 20 point span (sg3), respectively, from left to right. The bottom row shows SWV values along a horizontal line at a constant depth
of 3 cm. True SWV profiles from the finite element model are shown with dotted lines.

The true SWV map was obtained from the finite element
model by converting shear moduli to SWVs using Eq. (1).
Finally, MSE values were calculated with respect to these true
SWV values. MSE was estimated separately along each line
of constant depth, on both sides of the needle.

3.D.3. Phantom experimental data

RF data obtained from the data acquisition system were
used for tracking the lateral movement of the shear wave
pulse at di↵erent depths. Axial displacement estimation was
performed at each point in the imaging plane with the help of a
cross correlation based displacement estimation algorithm.28

Correlations were calculated along every corresponding A-
line over successive frames of the RF data. 2 mm long
windows with 75% overlap were used and the displacements
thus obtained were accumulated over the entire duration of
the acquired RF frames. This provided a displacement vs time
profile for each pixel in the imaging plane. The noise term Wn

in the Markov model subsumes all sources of noise that cause
uncertainty in the measured TTP values. The uncertainty may
arise from electronic noise in the RF echo data, uncertainties
from the displacement estimation routine, and errors in finding
the peak of the displacement profiles as shown in Fig. 3. The
TTP for each location of interest was obtained using the same
low pass filtering and peak finding algorithm as that used for
the finite element simulated data. In general, reflections from
interfaces between media of di↵erent sti↵nesses may cause
secondary reflected shear wavefronts. These can be suppressed
using a spatiotemporal directional filter.29,30 However in the
present setup, reflection artifacts did not cause a problem
because the shear wave pulse travels from a sti↵ medium
into a softer medium.

TTP data were obtained as a function of lateral distance
away from the needle at various depths in the phantom. The

noisy TTP data were then filtered using two di↵erent methods.
In the first method, the particle filtering algorithm discussed
in Sec. 2.B was used, the second method used a least-squares
fourth-order polynomial fit, and the third method uses a 10
point moving average filter. The particle filter was run with
parameters Ns = 5000, NT = 10, [LB,UB]= [0,10], p= 0.98,
and �2= 0.25. The reciprocal of the slope of this TTP curve
was used to estimate the SWV at di↵erent lateral locations and
generate a SWV map. The image was finally smoothed using

Fig. 6. A finite element simulation model was used to export frame-to-frame
displacements which were processed using various algorithms to estimate
SWV. Mean squared reconstruction error in the SWV maps produced from
the finite element simulation model is shown here, where the SWV from
the finite element model was used as ground truth. (pf = particle filter,
movav=moving average 10 point window, sg2=Savitzky–Golay quadratic
with 15 point span, sg3=Savitzky–Golay cubic with 20 point span, raw= no
filtering.)
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Fig. 7. The ideal SWV image from the finite element model is shown in (a). The ground truth SWV values are 4.28 and 1.28 m/s in the inclusion and the
background, respectively. A representative TTP plot along a line at a depth of 3 cm to the right of the needle is shown in (b). The SWV image shown in (c) is
generated by processing these TTP curves at all depths using the particle filter. Since the SWV values are obtained using a Bayesian model, the posterior density
can be used to produce a standard deviation image that provides feedback about the reliability of the SWV estimates. The standard deviation image in (d) is
calculated using the square root of the quantity in Eq. (10) for each pixel in the SWV image.

a 1⇥1 mm median filter6 to remove outliers and suppress any
linear streak artifacts that appear from processing individual
lines at constant depth.

Various statistics such as SNR,31 contrast (C), and contrast
to noise ratio (CNR)32 were calculated from the SWV maps
over three di↵erent ROIs each of size 10⇥5 mm. The three
ROIs were located in the sti↵ inclusion, the irregular tumor,
and the background region, respectively.

The following performance metrics were calculated from
the ROIs fixed in the three regions of the phantoms. The
locations of these ROIs are indicated in Figs. 8 and 9. For
each region, the SNR is defined as

SNR=
µ

�
,

where µ and �, respectively, denote the mean and the standard
deviation values of the SWVs calculated over the ROI. The
contrast (C) between a pair of regions is defined as

C =
µ1

µ2

where the subscripts indicate two di↵erent media. Similarly,
the contrast to noise ratio (CNR) is defined as32

CNR=
2(µ1� µ2)2

�2
1+�

2
2

.

Besides mechanical properties, accurate estimation of the
area of a sti↵ ablated region is also of clinical significance
because radiologists are interested in ablating the right volume
of cancerous tissue, along with a safety margin around the
tumor. Area estimates were obtained by manually outlining

the inclusion boundary in the SWV images obtained using
particle filtering, least-squares polynomial fitting, and B-mode
ultrasound.

4. RESULTS
4.A. Simulation results with synthetic data

This section discusses simulation results involving syn-
thetic piecewise linear data. The results shown in Fig. 4
show that the particle filter outperforms four other smoothing
methods considered. It is not surprising that finite di↵erencing
of the raw noisy data without any smoothing has the largest
MSE as seen in the three insets.

Note that for any constant value of p, the particle filter
outperforms other filtering methods at all noise levels. It is also
worth noting that the performance gap gradually decreases as
p increases from 0.85 to 0.95. This is because at larger values
of p there are fewer change points in the piecewise linear
function (on average) and so the filtering problem is “easier”
in the sense that it only has one or two straight line segments.

In practice, the parameters p and �2 and the upper and
lower limits of the uniform distribution are not known in
advance. One way to bypass problem is by estimating these
values from the raw data and using these estimates as inputs to
the particle filtering algorithm. The value of p is set based on
the ratio of the expected number of interfaces in the physical
experiment to the number of points in the dataset. The sample
variance of the raw data is used as an estimate for �2. The
lower limit for the distribution of Xn can be set to any small

Table I. Shear wave velocity estimates.

Phantom-1 Phantom-2

e t b e t b

EVE
SWV PF (m/s) 3.07 ± 0.7 2.02 ± 0.32 0.91 ± 0.31 4.68 ± 1.3 2.99 ± 0.4 1.32 ± 0.68
SWV LS (m/s) 3.14 ± 0.79 1.96 ± 0.23 1.16 ± 0.12 4.56 ± 0.75 3.1 ± 0.32 2.09 ± 0.2
SWV MA (m/s) 2.97 ± 0.75 1.57 ± 0.24 0.96 ± 0.18 4.66 ± 2.3 2.46 ± 0.3 1.74 ± 0.39

SSI SWV (m/s) 2.8 ± 1.1 2.3 ± 0.8 1.3 ± 0.4 4.1 ± 1.8 2.4 ± 1.4 2.1 ± 0.7

Note: Values of SWV of di↵erent regions in the two phantoms obtained from PF, LS filtering, and MA filtering applied
to the TTP data. Corresponding values obtained from the Supersonic Imagine scanner are also indicated. (e = ellipsoidal
inclusion, t = irregular tumor region, b = background.)
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Table II. Young’s modulus estimates.

Phantom-1 Phantom-2

e t b e t b

EVE
E PF (kPa) 29.6 ± 13 12.6 ± 3.8 2.74 ± 1.5 70.6 ± 52 27.3 ± 6.9 6.62 ± 9.5
E LS (kPa) 31.5 ± 18 11.7 ± 2.7 4.07 ± 0.86 63.9 ± 21 29.2 ± 6 13.2 ± 2.4
E MA (kPa) 28.2 ± 14 7.61 ± 2.5 2.87 ± 1.2 NAa 18.4 ± 4.4 9.52 ± 4.8

SSI E (kPa) 24.2 ± 5.8 13.3 ± 3.5 4.8 ± 0.5 50.1 ± 10.5 17.6 ± 4.8 13.6 ± 1.6

ELF E (kPa) 56.57 ± 0.25 24.74 ± 0.63 4.55 ± 0.06 41.05 ± 0.20 20.52 ± 0.54 15.10 ± 0.80

Note: Values of Young’s modulus of di↵erent regions in the two phantoms obtained from PF, LSs filtering and MA
filtering applied to the TTP data. Corresponding values obtained from the Supersonic Imagine scanner and mechanical
testing are also indicated. (e = ellipsoidal inclusion, t = irregular tumor region, b = background.)
aVariance of the estimate was too high to be useful.

positive number and a reasonable upper limit can be computed

Q3

from the raw data. In practice, small errors in the input values
of p and �2 did not a↵ect the final fit drastically. However, it
is crucial that the lower limit for the uniform distribution be
set correctly. If this value is larger than the smallest slope in
the data then the final fit would be just a straight line with a
slope equal to the lower limit.

Table III. SNR, C, and CNR.

Regions Method Phantom-1 Phantom 2

SNR (dB)

e

PF 13.2 ± 1.2 13.2 ± 3
LS 12.4 ± 1.3 16.8 ± 2.7
MA 12.8 ± 2.4 12.7 ± 4.6

t

PF 16.6 ± 2 18.4 ± 2.5
LS 19.8 ± 1.1 20.3 ± 1.2
MA 17.8 ± 3.2 19.2 ± 1.1

b

PF 9.67 ± 1.6 6 ± 1.8
LS 20.6 ± 1.8 23.4 ± 1.7
MA 17.8 ± 4.2 13.9 ± 2.1

C (dB)

e/t

PF 3.62 ± 0.56 3.83 ± 0.67
LS 4.1 ± 0.6 3.39 ± 0.49
MA 5.6 ± 0.66 5.66 ± 1.7

t/b

PF 7.06 ± 0.8 7.15 ± 0.77
LS 4.56 ± 0.6 3.5 ± 0.53
MA 4.26 ± 1.1 2.97 ± 0.67

e/b

PF 10.7 ± 0.7 11 ± 1
LS 8.66 ± 0.6 6.89 ± 0.85
MA 9.85 ± 0.7 8.62 ± 1.4

CNR (dB)

e/t

PF 11.8 ± 2.8 12.8 ± 3.7
LS 13.1 ± 2.7 17.9 ± 4.2
MA 17.5 ± 5 17.3 ± 6.3

t/b

PF 22.9 ± 3.6 19.7 ± 2.7
LS 27.5 ± 1.8 25.5 ± 1.9
MA 20.3 ± 3.7 13.4 ± 5.6

e/b

PF 24.6 ± 1.8 23 ± 4.1
LS 22.6 ± 2.2 28.5 ± 5.1
MA 24.5 ± 4.8 21.7 ± 7

Note: Values of SNR, C, and CNR obtained for various pairs of regions in the
two phantoms using the three di↵erent algorithms. (PF = particle filter, LS =
least squares, MA = moving average.) All numbers are in decibel. (e = ellipsoidal
inclusion, t = irregular tumor region, b = background.)

4.B. Results from finite element simulation data

SWV images reconstructed from the finite element simu-
lation data are shown in Fig. 5. Compared to other smoothing
methods, the particle filter not only preserves the sharp
boundary details but also provides a lower mean squared
reconstruction error as seen from the representative SWV
profiles shown along a line at a constant depth of 3 cm. The
spike near the center column is an artifact due to the needle.

MSE values were obtained along lines of constant depth on
both sides of the needle between the depths of 2.5 and 3.5 cm.
The box plot in Fig. 6 shows a summary of these values
for four di↵erent methods used for obtaining SWV images
from the noisy TTP image. The SWV image corresponding to
the sti↵ness distributions used in the finite element model was
used as the ground truth for obtaining each MSE measurement.
It can be seen that the particle filter provides the lowest median
MSE with smallest spread among the methods considered.

Standard deviation of the estimated SWV values calculated
using Eq. (10), SWV values can be displayed for the clinician
alongside the SWV image as seen in Fig. 7. Note the stray
high standard deviation pixels occur at locations laterally away
from the needle where the shear wave pulse is more di�cult
to track due to decreased peak displacement. However, most
of the pixels have variance close to zero indicating that the
SWV estimate is reliable (assuming the Bayesian model is
correct).

4.C. Experimental results from TM phantoms

Ten independent datasets were obtained from each of the
two TM phantoms using the experimental setup described

Table IV. Inclusion area estimates.

Method Phantom-1 Phantom-2

SWV PF 4.45 ± 0.15 4.13 ± 0.18
SWV LS 4.11 ± 0.19 4.01 ± 0.14
B-mode 4.68 ± 0.14 4.47 ± 0.11

Note: Estimates of area in square centimeter of the ellipsoidal inclusion obtained
from the SWV maps and B-mode images are shown. Areas were estimated by
manually outlining the inclusion and calculating the mean and standard deviation
of the areas over ten independent datasets.

Medical Physics, Vol. 42, No. 11, November 2015
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Fig. 8. ROIs and inclusion boundaries used for Phantom-1 are shown. Boundary used for B-mode area estimation is shown in (a). Boundaries for area estimation
and ROIs used for calculating various statistics on the SWV maps are shown in (b), (c), and (d).

previously in Sec. 3.C. In order to gauge the performance
of the particle filtering algorithm vis-a-vis existing imaging
and data processing techniques, SWV estimates were obtained
from two other methods. In the first method, a simple least-
squares fourth order polynomial fit was used to filter the raw
TTP data. Young’s modulus was calculated using Eq. (1).
SWV and shear modulus estimates obtained from these four
di↵erent methods (EVE with particle filtering, EVE with least-
squares filtering, SSI, and mechanical testing) are summarized
in Tables I and II. Image quality metrics were calculated for
the SWV maps obtained using the three di↵erent filtering
algorithms. These are shown in Table III. Standard deviations
are calculated from individual SNR, C, and CNR values
in decibel obtained from each of the ten datasets. Sample
outlines are shown in Figs. 8 and 9. Area estimate results are
summarized in Table IV.

Results of EVE and B-mode scans of the two phantoms
are shown in Figs. 8 and 9. Observe that in the SWV
reconstruction, the irregular tumor area can be distinguished
from the sti↵ inclusion and the background material. For
comparison, the SWV images generated using a simple least-
squares fourth order polynomial fitting method and using a
moving average filter area are also shown. Although there
is greater noise reduction and smoothing in the least-squares
fit, the boundary details of the inclusion and partially ablated
region get smeared out. For comparison, SWV maps obtained
using the SSI technique are also shown in Fig. 10.

5. DISCUSSION

Observe from Fig. 8 that the particle filtering method
applies an optimal amount of smoothing to the raw TTP data
and produces good boundary delineation even between the
inclusion and the irregular tumor regions that do not di↵er
greatly in their shear modulus values. There is always a risk
of over or undersmoothing when using ad hoc function fitting
algorithms (like least-squares) that may blur boundary details.
Quantitative estimates of SWVs and Young’s moduli obtained
using the particle filter agree well with the ground truth
obtained from mechanical testing and least-squares filtering.

The SNR, C, and CNR values indicate that the particle
filter is within a few decibel of the least-squares technique in
suppressing noise, while providing better visual delineation
between sti↵er and softer areas in the phantom. The particle
filtered SWV maps have quite high SNR and CNR values of
at least 30 and 40 dB, respectively. These test metrics do not
account for any measurement bias that may be present in the
raw TTP data and are used only to compare the performance
of the two filtering methods.

Finally, inclusion area estimates obtained from the particle
filtered SWV maps are quite close to those obtained from
B-mode imaging. As seen from Table IV, the least-squares
method underestimates the inclusion size which may be a side
e↵ect of oversmoothing. It is worth noting that the contrast be-
tween the three di↵erent regions of the phantom easily visible

Fig. 9. ROIs and inclusion boundaries used for Phantom-2 are shown. Boundary used for B-mode area estimation is shown in (a). Boundaries for area estimation
and ROIs used for calculating various statistics on the SWV maps are shown in (b), (c), and (d).
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Fig. 10. SWV maps obtained using the clinical software interface of the
Supersonic Imagine Aixplorer scanner using SSI are shown. Results from
Phantom-1 and Phantom-2 are shown in (a) and (b), respectively. Recon-
structions using the particle filtering algorithm are shown again on the same
SWV scale for comparison in (c) and (d).

in B-mode is because of intentionally increased backscatter
contrast in these manufactured phantom materials. In real
tissue, di↵erentiating sti↵er and softer areas using B-mode
scans is often challenging due to mixed echogenic contrast.33

Area estimates may be susceptible to user variability because
of the manual outlining step. Therefore, these measurements
should not be used as the primary metric for comparing the
performance of these SWV image reconstruction algorithms.

Young’s modulus estimates of the sti↵er areas in
Phantom-1 that are obtained from mechanical testing do
not agree with the results from ultrasound elastography
estimates obtained from EVE and SSI. There is much better
agreement of modulus estimates for the data obtained from
Phantom-2. This may be because Phantom-1 is over a year old
and there is a possibility of gradual degradation of the sti↵ness
of phantom materials over time.34 Cylindrical samples that

used in mechanical testing are stored separately and hence
are not under identical physical conditions as the material in
the actual phantom. Moreover, the numbers obtained from
elastography may have an inherent bias because the raw data
undergo multiple smoothing and filtering operations before
obtaining these modulus estimates.

SWV maps obtained using the Supersonic Imagine scanner
are shown in Fig. 10. It is apparent from these images that
EVE has the ability of generating SWV maps at greater depths
and larger fields of view. Due to imaging depth limitations,
inclusion area estimates could not be obtained using SSI. The
proprietary velocity reconstruction algorithm appears to use a
greater degree of smoothing. SWV estimates appear lower than
those obtained with the particle filter. Nevertheless, the SSI
technique di↵erentiates various regions in the phantoms quite
well, especially in case of Phantom-1 as seen in Fig. 10(a).

The ability of EVE technique to resolve fine boundary de-
tails is limited by the shear wave pulse width used. The data
shown in this paper were generated using a 30 ms wide shear
wave pulse. Although it may be possible to obtain sharper
delineation by using a narrower pulse, it was observed during
experimentation that due to certain physical limitations of the
actuator system, accurate amplitude control could not be ob-
tained for shorter vibration durations. The e↵ect of the width
of the pulse on estimation of TTP values and subsequent e↵ect
on the resolution of the SWV images will be analyzed in the
future.

The data processing algorithm used in this paper assume
that there is pure lateral propagation of the wave throughout
the phantom. This assumption fails to hold for regions above
and below the inclusion because the needle is bonded only to
the interior of the inclusion.35 As a result, SWV artifacts can
be seen in the regions that are shallower or deeper than the
sti↵er ellipsoid. In order to focus attention on the data obtained
from the regions that are laterally adjacent to area where the
needle is bound to the phantom material, the SWV maps in
Figs. 8 and 9 are shown beginning at a depth of about 1 cm.
The wave propagation phenomenon above and below the sti↵
ellipsoid is more complex than pure transverse wave motion
and a separate study to analyze this aspect may be necessary.

The data acquisition system is capable of operating at a
frame rate of about 2 kHz which provides su�cient time
sampling to track the shear wave pulse. As a practical matter,
the particle filter runs slower than least-squares polynomial
fitting. However, the algorithm is parallelizable because data
at each depth are filtered independently. The current test
implementation takes a few minutes to reconstruct each image.
It is quite common to see a speedup by an order of magnitude
when implemented as compiled code, providing almost real-
time monitoring capability.

6. CONCLUSION
This paper presented a model-based denoising scheme that

reduces the risk of oversmoothing SWV maps and produces
visually appealing delineation results. Results from simulated
data show that the particle filter is less susceptible to noise
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than a sliding window averaging filter. Test metrics calculated
using experimental phantom data show that the proposed
filtering method does equally well as least-squares filtering
without smearing out the change points and providing a clear
visual distinction between various sti↵ness regions in the
phantom.
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APPENDIX: PARTICLE FILTER ALGORITHM
This section presents the details of the particle filter

algorithm. The complete algorithm is a combination of
existing algorithms presented in the papers by Arulampalam
et al.

19 and Doucet et al.

24

Fig. 11. Details of the particle filter algorithm in pseudocode adapted from Algorithm 6 in the paper by Arulampalam et al. (Ref. 19) and Section V of Doucet
et al. (Ref. 24).
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Fig. 12. Resampling algorithm used within the particle filter algorithm
shown in Fig. 11.

Fig. 13. Backward smoothing routine used in the particle filter algorithm
shown in Fig. 11.
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