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Abstract—Percutaneous needle-based liver ablation pro-

cedures are becoming increasingly common for treatment

of small isolated tumors in hepatocellular carcinoma pa-

tients who are not candidates for surgery. Rapid three

dimensional visualization of liver ablations has poten-

tial clinical value because it can enable interventional

radiologists to plan and execute needle-based ablation

procedures with real time feedback. Ensuring the right

volume of tissue is ablated is desirable to avoid recurrence

of tumors from residual untreated cancerous cells. Shear

wave velocity measurements can be used as a surrogate

for tissue stiffness to distinguish stiffer ablated regions

from softer untreated tissue. This paper extends the pre-

viously reported sheaf reconstruction method to generate

complete three dimensional visualizations of shear wave

velocities without resorting to an approximate intermediate

step of reconstructing transverse C-planes. The noisy

data is modeled using a Markov random field, and a

computationally tractable reconstruction algorithm that

can handle grids with millions of points is developed.

Results from simulated ellipsoidal inclusion data show

that this algorithm outperforms standard nearest neighbor

interpolation by an order of magnitude in mean squared

reconstruction error. Results from phantom experiments

show that it also provides a higher contrast-to-noise ratio

by almost 2 dB and better SNR in the stiff inclusion by

over 2 dB compared to nearest neighbor interpolation and
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has lower computational complexity than linear and spline

interpolation.
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I. INTRODUCTION

ULTRASOUND elastography is a safe and rapid

method for imaging elastic properties of tissues.

Following the pioneering work of Ophir et al. [1] that

laid the groundwork for signal processing methods for

estimating displacements and strain from raw ultrasound

echo data (quasi-static ultrasound elastography), research

in ultrasound-based tissue elasticity imaging has now

enabled the measurement of many different properties

such as Young’s modulus [2], shear modulus [3], [4],

shear wave velocity (SWV) [5], [6], [7], [8], [9] and

viscoelastic properties [10]. The present paper deals with

the problem of reconstruction of three dimensional (3D)

visualization of SWVs from data acquired over two

dimensional (2D) image planes.

Electrode vibration-based shear wave elastography

(EVE) [7], [8] is a type of transient elastography tech-

nique which is particularly suited for monitoring percuta-

neous needle-based ablation procedures. Radiofrequency

and microwave ablation have become common clinical

procedures in interventional radiology for treating hepa-

tocellular carcinoma [11]. Ablation is typically used for

patients who are not candidates for surgical resection and

have a fairly localized tumor of diameter less than 5 cm

[12].

Ablation uses electromagnetic heating to above 60◦C

which causes protein denaturation and cell necrosis [13].

As part of the treatment planning stage, patients typically

undergo an MRI or CT scan to locate the tumor. B-

mode ultrasound is used during the minimally invasive

procedure to guide the ablation needle into the tumor,

and the procedure is followed by a post-ablation MR or

CT scan to ensure that the right volume of cancerous



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL, VOL. X, NO. XX, XXX XXXX 2

tissue is treated [14]. Ablation planning and monitoring

is important because residual untreated cancerous cells

may cause the tumor to recur and necessitates additional

treatment if seen on post-ablation scans.

B-mode ultrasound does not provide a reliable way to

locate the ablation boundary because tissue echogenic-

ity may not be correlated with stiffness [15]. On the

other hand, ultrasound shear wave elastography has the

potential to provide immediate feedback to clinicians

about the extent of an ablation by using the speed of

a shear wave as a surrogate for tissue stiffness [16],

[17], [18]. Although it is safer and faster than other

imaging modalities that use ionizing radiation, it has

the disadvantage of not being able to provide the same

level of high resolution 3D reconstructions. Ultrasound

elastography is typically used to obtain 2D image re-

constructions of tissue stiffness because 1D array probes

are still more commonly used in clinical procedures

than 2D matrix arrays. Although it may be possible to

perform 3D transient elastography using a 2D matrix

array transducer [19], [20] the frame rates are too low

to track the propagation of a shear wave in a single

volume acquisition. Therefore, a method for rapidly

reconstructing a 3D visualization from multiple 2D slice

acquisitions has clinical value.

The sheaf of ultrasound planes reconstruction

(SOUPR) method was presented in [21] for obtaining C-

plane (i.e., transverse plane) reconstructions of SWVs.

Instead of using an approximate approach of recon-

structing individual transverse planes, the present paper

proposes a more general method for reconstruction on

a full 3D grid while also handling ill-posed situations

where the number of grid points may exceed the number

of data points. A computationally tractable algorithm that

can handle large grid sizes with millions of grid points in

3D is also presented. A standard method for dealing with

fast interpolation of scattered data on a grid is through

nearest neighbor interpolation [22], and has been previ-

ously used for 3D reconstruction of B-mode ultrasound

images from 2D slices [23]. The algorithm presented

here provides an order of magnitude better mean squared

reconstruction error and higher signal-to-noise ratio than

nearest neighbor interpolation, as demonstrated through

simulations and data acquired from a tissue mimicking

(TM) phantom experiment.

II. THEORY

A. Markov Random Field Model

A Markov random field (MRF) generalizes the one-

dimensional Markov property to higher dimensions. This

is useful, for instance, when the random process is

a function of spatial co-ordinates instead of time. Let

{X1, X2, . . . , Xt, . . .} be a sequence of discrete valued

random variables forming a Markov chain. Then the joint

conditional density function of a variable conditioned on

the past satisfies the following property:

P (Xt|X1, . . . , Xt−1) = P (Xt|Xt−1).

The same idea can be extended to a “random field”

indexed by spatial co-ordinates as follows. Consider

an infinite lattice of nodes indexed by triplets −∞ <
i, j, k <∞. The MRF property can be written as:

P (Xi∗,j∗,k∗ |{Xi,j,k : i 6= i∗, j 6= j∗, k 6= k∗})
= P (Xi∗,j∗,k∗ |{Xi∗±1,j∗±1,k∗±1}),

that is, the value at any given node when conditioned on

its immediate neighbors is independent of all other node

values. These conditions can be analogously defined

using continuous density functions (instead of discrete

probability mass functions) for random variables defined

on a continuous state space. Also, in practice, it is

assumed that the grid size is finite 1 ≤ i ≤ Ny,

1 ≤ j ≤ Nx and 1 ≤ k ≤ Nz where Nx, Ny and

Nz respectively denote the number of grid points along

the x, y and z dimensions of the 3D volume.

For this paper, a 3D lattice Ising model [24, Ch. 1] is

used because the final goal is to reconstruct the measured

quantity on a fine grid of points in 3D. An Ising model

captures the dependence of values at each grid node as

influenced by the values at its immediate neighboring

nodes.

A similar idea was used by Gorce et al. [25] to

model radiofrequency (RF) ultrasound data for spectral

processing. Temporarily ignoring the grid points lying on

the boundary, a 6-neighborhood of each node as shown

in Fig. 1 is used to define “clique potentials” as follows

[26]:

V (ui,j,k) = (ui,j,k − di,j,k)
2

+ λ

[

(

ui,j+1,k + ui,j−1,k − 2ui,j,k
∆x2

)2

+

(

ui+1,j,k + ui−1,j,k − 2ui,j,k
∆y2

)2

+

(

ui,j,k+1 + ui,j,k−1 − 2ui,j,k
∆z2

)2
]

, (1)

where di,j,k is the value of the data point closest to

the node at lattice location (i, j, k) and ∆x,∆y,∆z are

the grid resolutions along the three axes. The intuition

behind using this potential function is as follows. The

first term is a data fidelity term that encourages the node

values to be close to the values at nearby data points. The
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Fig. 1. A 6-neighborhood of grid nodes is used to calculate the

clique potential at each grid point using (1). The data point nearest

to the central grid point is also used to maintain data fidelity.

next three terms are second order finite differences that

approximate the second derivative at each node location

to promote smoothness.

Let u denote an NxNyNz × 1 vector consisting of

the individual ui,j,k values.1 The “energy function” is

defined as the sum of the potentials over all cliques:

E(u) =
∑

i,j,k

V (ui,j,k).

By the Hammersley-Clifford theorem, the joint density

function for the state u of the MRF can be expressed as

[27]:

p(u) =
1

Z
exp(−E(u))

where Z is a normalization that ensures that p integrates

to unity.

B. Iterative Reconstruction Algorithm

The goal of a reconstruction algorithm is to esti-

mate the mode of this distribution, i.e., the value of

u which maximizes p(u), or equivalently, minimizes

− log p(u) = logZ + E(u). In most situations, it is

impossible to calculate Z explicitly because it involves

integrating over all possible node values. However, the

value of Z is not required for this minimization problem,

and it is sufficient to find a minimizer for E(u).
In practice the reconstruction grid size can be quite

large. For instance, even in a simple case of a hundred

grid points along each of the three axes, the total

number of grid points (i.e. the length of the vector u) is

106. A computationally tractable iterative reconstruction

approach is shown in Fig. 2. The key idea is to start

from an initial guess for the solution and then gradually

1The vectorization step involves storing the value ui,j,k at the

(i + (j − 1)Ny + NyNx(k − 1))th entry in the vector u. Note

that i and j correspond to rows and columns respectively, i.e., y and

x dimensions respectively.

refine the guess such that the energy function value

decreases at each iteration. In order to handle large grid

sizes, it is important that the updates should be easy to

compute, both in terms of memory storage requirement

and computational complexity.

Consider the following greedy algorithm [28, Ch. 17]

which updates the value at each node myopically, by us-

ing values from the previous iteration for each neighbor.

Let u(l) denote the value of the vector at iteration l, for

l ≥ 0. The (i, j, k)th element u
(l+1)
i,j,k of this vector is

obtained by minimizing the potential function in (1) at

a fixed coordinate as follows:

u
(l+1)
i,j,k = argmin

u
(u− di,j,k)

2

+λ









u
(l)
i,j+1,k + u

(l)
i,j−1,k − 2u

∆x2





2

+





u
(l)
i+1,j,k + u

(l)
i−1,j,k − 2u

∆y2





2

+





u
(l)
i,j,k+1 + u

(l)
i,j,k−1 − 2u

∆z2





2

 .

This can be solved in closed form by setting the

derivative of the function on the right with respect to

u to zero:

u
(l+1)
i,j,k =

1

1 + 4λ
(

1
∆x4 + 1

∆y4 + 1
∆z4

)

[

di,j,k

+
2λ

∆x4
(u

(l)
i,j+1,k + u

(l)
i,j−1,k)

+
2λ

∆y4
(u

(l)
i+1,j,k + u

(l)
i−1,j,k)

+
2λ

∆z4
(u

(l)
i,j,k+1 + u

(l)
i,j,k−1)

]

.

This is similar to the iterated conditional modes

(ICM) technique described by Besag [29]. However,

note that the update is only a linear combination of the

components of u
(l). Therefore, unlike the original ICM

algorithm where each pixel is changed individually, the

complete vector can be updated in a single step using

the following matrix formulation:

u
(l+1) =

1

1 + 4λ
(

1
∆x4 + 1

∆y4 + 1
∆z4

)d+Au
(l) (2)

where d denotes is a vector of di,j,k values obtained

via nearest neighbor interpolation [30], [31]. The matrix



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL, VOL. X, NO. XX, XXX XXXX 4

Input: d: vector of nearest neighbor interpolation

A: update matrix defined in (3)

∆x,∆y,∆z: grid resolutions

λ: smoothing parameter

TOL: tolerance for difference between iterates

Output: u: final 3D reconstruction

1: l← 0
2: u

(0) ← d

3: repeat

4: u
(l+1) ← 1

1+4λ
(

1

∆x4 +
1

∆y4 +
1

∆z4

)d+Au
(l)

5: l← l + 1
6: until ||u(l+1) − u

(l)|| < TOL.

7: u← u
(l)

Fig. 2. Iterative reconstruction algorithm which starts with an initial

guess equal to the nearest neighbor interpolation and refines it using

a sparse matrix update equation. The stopping criterion used here

examines the progress from one iteration to the next and stops if the

norm is smaller than a user defined tolerance. Other stopping criteria

(such as a fixing the number of iterations ahead of time) may also

be used.

A = [amn] is defined as:

amn =































2λ/∆x4

1+4λ
(

1

∆x4 +
1

∆y4 +
1

∆z4

) if n = m± 1

2λ/∆y4

1+4λ
(

1

∆x4 +
1

∆y4 +
1

∆z4

) if n = m±Ny

2λ/∆z4

1+4λ
(

1

∆x4 +
1

∆y4 +
1

∆z4

) if n = m±NyNx

0 otherwise,
(3)

where boundary cases are handled by only considering

valid indices 1 ≤ m,n ≤ NxNyNz . It is worth noting

the computational complexity of the update equation (2).

The matrix A is NxNyNz × NxNyNz and the matrix-

vector product would require O(N2
xN

2
yN

2
z ) multiplica-

tions and additions. This can be prohibitive for large grid

sizes with millions of grid points. However, note that A

is sparse and has at most six non-zero entries per row

as seen from (3). Therefore, each element in Au
(l) can

be calculated in constant time, resulting in an overall

complexity of O(NxNyNz). This is discussed further in

Section V.

The following theorem asserts that the sequence of

iterates generated in (2) must eventually converge to a

limit point. This is proved using a contraction mapping

argument in the Appendix.

Theorem. The sequence of iterates {u(l)} generated by

the algorithm in Fig. 2 has a limit point.

Proof: See Appendix.

III. MATERIALS AND METHODS

A. Simulated Ellipsoid Data
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Fig. 3. Simulated mean squared error values (in dB) from the

ellipsoidal inclusion data with different processing parameters. MSE

was calculated with respect to the ground truth model and the average

was calculated over 20 independent realizations with added Gaussian

noise. MSE was only evaluated in a shell around the ellipsoid bound-

ary. Reconstruction error from a simple nearest neighbor interpolation

approach is also shown for comparison.

The mean squared error (MSE) performance of the

3D reconstruction algorithm was evaluated using sim-

ulated ellipsoidal inclusion data with a smooth transi-

tion boundary. The SWV value was set to 4 m/s and

1 m/s respectively in the inclusion and the background

region. The smooth transition region was modeled using

a sigmoid function. The width of this transition region

was set to 5 mm following results from [8]. In reality,

ablation shapes may be irregular due to presence of blood

vessels in the vicinity. An asymmetry is introduced in

this ellipsoidal model by setting the SWV in a narrow

cylindrical volume equal to 8 m/s.

The “ground truth” SWV values v(x, y, z) were de-

fined as follows:

v(x, y, z) =











8, if (x− 0.25)2 + (y − 1.2)2 ≤ 0.22

1+3

(

1− 1

1+e
−α

(

x2

12
+

y2

12
+

(z−2.25)2

1.52
−1

)

)

, otherwise,

(4)

where the function is evaluated inside −2 ≤ x, y ≤ 2 and

0 ≤ z ≤ 4.5 and the choice of α = − 1
0.25 log

(

1
0.99 − 1

)
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captures 98% of the transition region over a width of

5 mm. These numbers were chosen to closely match

the dimensions (in cm) of a TM phantom used in

Section III-C. The sheaf acquisition pattern was mim-

icked by sampling this ellipsoid using a cylindrical co-

ordinates grid with 4, 6, 12 and 16 image planes. Each

image plane was sampled over a 100 × 100 grid, 4 cm

wide and 4.5 cm high, i.e., by evaluating (4) inside

−2 ≤ x, y ≤ 2 and 0 ≤ z ≤ 4.5. I.i.d Gaussian noise

was added to this ground truth data with various noise

levels ranging from 5 dB to 20 dB (dB with respect to the

inclusion stiffness). A 3D reconstruction was generated

using the MRF algorithm listed in Fig. 2 with λ = 0.01,

and a grid of size 100 × 100 × 100 in a parallelepiped

with lateral and elevational dimensions of 4 cm each

and depth of 4.5 cm, so that ∆x = ∆y = 0.04 cm

and ∆z = 0.045 cm. Mean reconstruction MSE was

calculated over 20 independent realizations of the noisy

data in a shell of thickness 0.6 cm centered around the

ellipsoid boundary. For comparison, the same data was

also reconstructed using nearest neighbor interpolation.

B. Finite Element Simulation

An electrode vibration elastography experiment was

simulated using a finite element model (FEM) consisting

of a stiff inclusion in soft background. The stiffness

values were chosen so that the inclusion had a SWV of

4.3 m/s and the surrounding background had a SWV of

1.3 m/s. Details about the FEM can be found in the paper

by DeWall et al. [8]. Individual 2D planes in the sheaf

were simulated separately due to computational reasons

and a limit on the number of nodes. Each image plane

was reconstructed using a particle filtering algorithm

[32] and registered using the location of the needle as

reference.

TABLE I

CONTRAST AND CONTRAST-TO-NOISE RATIOS FEM SIMULATION

Algorithm 4 slices 6 slices 12 slices 16 slices

C

MRF 12.03 11.87 11.70 11.68

NNB 12.08 11.91 11.77 11.75

LIN 10.15 10.68 11.06 11.12

CNR

MRF 11.01 9.86 9.49 9.39

NNB 9.16 8.05 7.74 7.67

LIN 5.49 7.02 7.76 7.92

Values of contrast (C) and contrast-to-noise ratios (CNR) in

dB between the inclusion and the background. (MRF=Markov

random field algorithm, NNB=nearest neighbor interpolation,

LIN=linear interpolation).

A 3D reconstruction was generated from the SWV

values on registered image planes in the sheaf. The

performance of the MRF algorithm was compared with

(a) MRF 16 slices

(b) NNB 16 slices

(c) LIN 16 slices

Fig. 4. 3D reconstructions of SWV values obtained from an elec-

trode vibration elastography tissue-mimicking phantom experiment

with 16 slices using the MRF reconstruction algorithm in (a), nearest

neighbor interpolation (NNB) in (b) and linear interpolation (LIN) in

(c). NNB reconstruction appears more blocky as compared to MRF

and has poorer signal-to-noise ratio. Observe that the high velocity

artifact to the left of the needle is smaller with MRF compared to LIN.

MRF provides a reconstruction on par with the LIN algorithm with

an order of magnitude faster reconstruction time and better image

quality metrics.

nearest neighbors (NNB) interpolation and linear (LIN)
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TABLE II

SIGNAL TO NOISE RATIOS FEM SIMULATION

ROI Algorithm 4 slices 6 slices 12 slices 16 slices

bkg

MRF 18.45 18.67 18.75 18.74

NNB 16.04 16.45 16.23 16.21

LIN 17.50 16.89 17.33 17.38

inc

MRF 13.60 12.49 12.17 12.07

NNB 11.75 10.66 10.40 10.34

LIN 8.78 10.10 10.68 10.82

Signal to noise ratios (SNR) in dB calculated from par-

allelepiped shaped ROIs in the background and inclusion.

The MRF reconstruction has a higher SNR in all cases.

(MRF=Markov random field algorithm, NNB=nearest neigh-

bors interpolation, LIN=linear interpolation, bkg=background,

inc=inclusion).

TABLE III

FEM SIMULATION MEAN SQUARED RECONSTRUCTION ERRORS

Algorithm 4 slices 6 slices 12 slices 16 slices

MRF 0.24 0.25 0.26 0.26

NNB 0.39 0.41 0.41 0.42

LIN 0.43 0.38 0.35 0.35

Mean squared reconstruction errors are calculated with

respect to the ground truth SWV values used in the

FEA model. MRF reconstruction gives the lowest MSE

in all cases. (MRF=Markov random field algorithm,

NNB=nearest neighbors interpolation, LIN=linear inter-

polation, bkg= background, inc=inclusion).

interpolation results. The reconstruction parameters were

identical to those used for the simulated ellipsoidal

example in Section III-A. The LIN algorithm operates

by first calculating a tetrahedralization with all the data

points and then uses linear barycentric interpolation in

each triangle to estimate the SWV at points on the grid

[33].

Various image quality statistics [34], [35] were cal-

culated to compare the reconstruction quality from the

MRF algorithm, NNB and LIN interpolation methods.

Signal to noise ratio (SNR) is defined as SNRinc =
20 log10

µinc

σinc
where the subscript “inc” denotes inclu-

sion. A similar formula is used for the background

(“bkg”). Contrast is calculated using C = 20 log10
µinc

µbkg

and contrast-to-noise ratio (CNR) using CNR =
20 log10

µinc−µbkg√
σ2
inc+σ2

bkg

. Additionally, MSE with respect to

the (known) ground truth SWV values used in the FEA

model was also calculated.

C. Tissue Mimicking Phantom Experiment

An oil-in-gelatin based TM phantom [36] consisting

of a stiff ellipsoidal inclusion embedded in a softer

background material was used for acquiring EVE data.

The phantom consisted of a needle firmly glued to the

inclusion to simulate the needle in an ablation procedure.

A shear wave pulse was set up in the TM phantom by

vibrating the needle using a piezoelectric actuator. The

actuator was driven by a controller (Physik Instrumente,

Germany) that was synchronized with the ultrasound

imaging system (Ultrasonix SonixTOUCH, Canada). A

half-sinusoid pulse of amplitude 100 microns and width

of 20 ms was used to generate the shear wave.

The ultrasound system was operated in research mode

which allowed the use of external triggering and a

custom scan sequence. A conventional focused transmit

acquisition method used to generate B-mode scans does

not provide sufficiently high frame rates to track a shear

wave. Therefore a phase locked mechanism described

in [8] was used to assemble apparent high frame rate

RF echo data frames. In this method, multiple pulse

vibrations are applied to the needle and only a narrow

vertical band of RF data in the image plane is acquired

after each vibration. This rests on a reasonable assump-

tion that every pulse has almost identical amplitude and

width and there is sufficient delay to allow perturbations

from the previous vibration to decay to zero. The 128

element linear array transducer was operated at a center

frequency of 5 MHz with the RF data sampled at

40 MHz.

D. Shear Wave Velocity Reconstruction

The method used for reconstructing individual image

planes is identical to the one described in [21]. It is

assumed that the shear wave pulse travels laterally in

the image plane with the needle acting as a line source

and particle displacements are purely axial (aligned

with the direction of the ultrasound beam lines). A

1D crosscorrelation-based displacement estimation algo-

rithm with axial window length of 2 mm and 1.5 mm

overlap is used to determine particle displacements for

each pair of consecutive frames. The resulting frame-to-

frame displacement movie can be used to localize the

shear wave pulse in both space and time. Due to the

lateral propagation assumption, the shear wave trajectory

can be traced along lines at constant depth radiating

away from the needle. The time of peak displacement at

each pixel is used as an estimate for the arrival time of

the shear wave pulse with sub-frame-number resolution

using a 5-point parabolic fit around the peak.

3D reconstructions are generated using the MRF al-

gorithm in Fig. 2. For comparison, nearest neighbors

and linear interpolations are also generated and image

quality metrics described in Section III-B are calculated.

Parallelepiped shaped regions of interest (ROI) of size

5×5×10 mm3 are used to calculate mean and standard

deviations of SWVs in the background and inclusion.
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TABLE IV

SHEAR WAVE VELOCITY ESTIMATES TM PHANTOM EXPERIMENT

Algorithm ROI 4 slices 6 slices 12 slices 16 slices

MRF
bkg 0.80± 0.13 0.76± 0.11 0.79± 0.12 0.79± 0.14
inc 1.53± 0.53 1.50± 0.50 1.47± 0.49 1.48± 0.49

NNB
bkg 0.80± 0.15 0.76± 0.13 0.79± 0.14 0.79± 0.16
inc 1.51± 0.59 1.49± 0.57 1.45± 0.57 1.46± 0.58

LIN
bkg 0.81± 0.13 0.77± 0.11 0.79± 0.12 0.80± 0.13
inc 1.43± 0.51 1.45± 0.50 1.45± 0.46 1.52± 0.60

Mean and standard deviation of shear wave velocities (in m/s) obtained

from five independent datasets are shown here. The MRF reconstruction

has a lower variance in all cases. (MRF=Markov random field algorithm,

NNB=nearest neighbors interpolation, LIN=linear interpolation, bkg= back-

ground, inc=inclusion). When measured with a clinical ultrasound scanner

(Supersonic Imagine), SWV values for the inclusion and the background were

estimated at 1.2± 0.03 m/s and 0.9± 0.07 m/s respectively.

TABLE V

CONTRAST AND CONTRAST-TO-NOISE RATIOS TM PHANTOM

EXPERIMENT

Algorithm 4 slices 6 slices 12 slices 16 slices

C

MRF 5.70 5.97 5.43 5.53

NNB 5.56 5.89 5.30 5.33

LIN 5.01 5.53 5.30 5.60

CNR

MRF 4.04 4.81 3.67 3.27

NNB 2.08 2.81 1.45 1.03

LIN 1.91 3.00 3.18 2.85

Values of contrast (C) and contrast-to-noise ratios (CNR) in dB

between the inclusion and the background. All numbers are

in dB. The Markov random field algorithm provides slightly

better C than nearest neighbor interpolation and also provides

higher CNR in the inclusion compared to linear interpolation.

(MRF=Markov random field algorithm, NNB=nearest neighbor

interpolation, LIN=linear interpolation).

TABLE VI

SIGNAL TO NOISE RATIOS TM PHANTOM EXPERIMENT

ROI Algorithm 4 slices 6 slices 12 slices 16 slices

bkg

MRF 22.65 23.14 21.72 17.78

NNB 21.74 21.87 20.24 16.21

LIN 23.30 23.83 21.56 18.94

inc

MRF 11.14 11.34 10.72 10.47

NNB 9.03 9.21 8.51 8.22

LIN 9.27 9.77 10.18 9.55

Signal to noise ratios (SNR) in dB calculated from paral-

lelepiped shaped ROIs in the background and inclusion. Com-

pared to NNB, the MRF reconstruction has a higher SNR in all

cases, and better SNR than LIN in the inclusion. (MRF=Markov

random field algorithm, NNB=nearest neighbors interpolation,

LIN=linear interpolation, bkg= background, inc=inclusion).

IV. RESULTS

A. Simulation Results

As seen in Fig. 3, in all cases the MRF algorithm pro-

vides lower MSE than nearest neighbor interpolation by

an order of magnitude when reconstructing a simulated

ellipsoid with additive Gaussian noise. There is an im-

provement in MSE performance with increasing number

of imaging planes. Due to the smoothness promoting

term used in the clique potential function in (1) MRF

reconstruction is not as sensitive to noise as NNB.

Image quality metrics for 3D reconstructions gener-

ated using the FEM simulation are shown in Tables I and

II. The MRF algorithm provides higher SNR, C and CNR

values than NNB and LIN algorithms. Mean squared re-

construction errors with respect to the ground truth SWV

values are shown in Table III. MRF algorithm provides

the lowest MSE of the three algorithms compared.

B. Experimental Results

SWV measurements are averaged over five indepen-

dent datasets obtained on the same phantom to average

out any mis-registration errors from manual placement

of the transducer probe at different angles [21]. SWV

values from the three reconstruction methods are shown

in Table IV. Although all methods give similar mean

estimates, the MRF algorithm has a lower standard

deviation than NNB.

Table V shows C and CNR values for the three meth-

ods with different numbers of image slices used for 3D

reconstruction. MRF algorithm provides higher contrast,

and also outperforms NNB by 1.96–2.24 dB and LIN

interpolation by 0.49–2.13 dB in CNR values, depending

on the number of image slices. In the inclusion, SNR

values obtained from the MRF reconstruction outperform

NNB by over 2 dB and LIN algorithm by 0.54–1.87

dB. This is because the clique potential model in (1)

implicitly applies a low pass noise filter by constraining

the derivative at each grid point.

Sample 3D reconstructions from the three methods

with 16 image slices are shown in Fig. 4. Reconstructions

from NNB interpolation appear blocky, because it fills

all the missing grid values with the SWV value from the



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL, VOL. X, NO. XX, XXX XXXX 8

nearest data point resulting in a “piecewise constant”

appearance. Both MRF and LIN algorithms provide

smoother reconstructions.

V. DISCUSSION

There is a subtle distinction between the MRF recon-

struction algorithm and standard interpolation routines

such as NNB and LIN considered in this paper. The

MRF method is a function approximation technique as

opposed to interpolation. NNB, LIN and other spline fit-

ting algorithms assume that the data points are noiseless

and produce reconstructions that respect each data point

exactly. However, this may not be a good assumption for

3D SWV reconstruction where point measurements of

velocities may be noisy. The MRF algorithm generates a

reconstruction that obeys the data points while trying to

maintain smoothness; therefore the final reconstruction

does not necessarily pass through each data point.

Image quality metrics such as C, CNR and SNR

suggest that MRF performs better than LIN for lower

number of slices and the disparity decreases as more

slices are added. Since MRF does not necessarily force

the final fit to pass through the (noisy) data points,

it allows greater smoothing to be achieved than LIN,

especially with fewer number of image slices. The SNR

improvement is greater in the inclusion region where

most of the noisy data points and high SWV outliers

are present.

As discussed in Section II-B, it is important to con-

sider the algorithmic complexity of these algorithms be-

cause it can result in prohibitively long processing times

for large grid sizes. NNB has the lowest time complexity

among the three algorithms considered in this paper.

The MRF algorithm depends on the NNB reconstruction

as its initial guess. The proof of convergence in the

Appendix suggests that the rate of convergence depends

on ||A|| which in turn depends on the grid resolution

and the smoothing parameter λ. So, provided the NNB

result is readily available, the MRF algorithm is almost

linear O(NxNyNz) with a constant that depends on

grid resolution and the parameter λ in the algorithm in

Fig. 2. On the other hand, linear interpolation requires

construction of a triangulation from Nd data points in

3D which, in the worst case, can take O(N2
d ) time,

and so the algorithm will have a time complexity of

O(N2
dNxNyNz). Depending on the value of Nd, this

can cause LIN algorithm to run orders of magnitude

slower than the MRF algorithm. For example, the 3D

reconstructions shown in Fig. 4 were about 20 times

faster with MRF algorithm than linear interpolation.

This paper discussed a specific application of recon-

structing a stiff inclusion embedded in a soft background

which is usually the case for ablation monitoring. Re-

flection artifacts can corrupt SWV estimates obtained

from time of flight based algorithms. Such artifacts were

not visible in pixel displacement profiles for the FEA

and phantom data used in this paper because the shear

wave originated in the stiffer material. In general, direc-

tional filtering [37] will be necessary when generating

SWV maps on individual imaging planes before feeding

them to the MRF reconstruction algorithm, especially if

the shear wave travels through a soft-to-stiff transition

boundary. The MRF reconstruction can be applied to

visualization of softer inclusions as well, provided the

input SWV values are corrected for such artifacts.

The MRF reconstruction algorithm enforces smooth-

ness by penalizing large values of local derivatives.

It is important to choose an appropriate value of the

penalty parameter λ to avoid over or under-smoothing

[21]. This algorithm is naturally suited for handling

reconstruction problems where the ground truth does not

contain step transitions. It may be necessary to image

the volume with sufficient number of imaging planes to

capture the boundary irregularities and produce reliable

3D visualizations of highly irregular inclusion shapes.

The effect of increasing number of imaging planes on

reconstruction is evident in Fig. 3. The location of the

irregularity was such that it was not captured by 4, 6

or 8 equi-angular imaging planes. There is a drop in

reconstruction MSE when 12 or 16 planes are used. The

slight apparent increase in MSE from 12 to 16 planes is a

sampling artifact. When using 12 imaging planes, one of

the planes happens to coincide precisely with the location

of the irregularity; the imaging planes are slightly offset

from that location when 16 planes are used.

VI. CONCLUSION

This paper presented a 3D reconstruction algorithm

based on Markov random fields for electrode vibration

shear wave elastography. The model-based reconstruc-

tion algorithm provides better image quality metrics than

standard nearest neighbor interpolation, with improved

SNR and CNR and also outperforms linear scattered

data interpolation methods in processing speed. Although

the results presented in this paper use SWV data, the

reconstruction algorithm is quite general and can be ap-

plied to other quantitative measurements such as strain,

temperature or shear modulus. Moreover, it can also

handle ill-posed inverse problems where the grid size is

much larger than the number of measurements and the

measurements may be scattered at arbitrary locations in

a 3D volume.
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APPENDIX

PROOF OF CONVERGENCE

The iteration in (2) can be represented by a function

f : RN → RN defined as:

f(u) =
1

1 + 4λ
(

1
∆x4 + 1

∆y4 + 1
∆z4

)d+Au.

Let || · || denote the 2-norm for vectors and the induced

spectral 2-norm for matrices. Note that any row of A

contains at most six non-zero elements with elements

amn defined in (3). By the Perron-Frobenius theorem

[38], a bound on the largest eigenvalue of A, and hence

on ||A|| can be obtained as follows:

||A|| ≤ max
m

∑

n

amn

≤ 4λ/∆x4

1 + 4λ
(

1
∆x4 + 1

∆y4 + 1
∆z4

)

+
4λ/∆y4

1 + 4λ
(

1
∆x4 + 1

∆y4 + 1
∆z4

)

+
4λ/∆z4

1 + 4λ
(

1
∆x4 + 1

∆y4 + 1
∆z4

)

=
4λ′

1 + 4λ′

< 1

where λ′ = λ
(

1
∆x4 + 1

∆y4 + 1
∆z4

)

.

Therefore,

||f(u)− f(v)|| = ||A(u− v)||
≤ ||A|| ||u− v||
< ||u− v||,

where the last step follows from the fact that ||A|| < 1.

Accordingly, f is a contraction map and by the Banach

fixed point theorem [39] the sequence of iterates must

converge to a limit point.
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