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ABSTRACT

Hepatocellular carcinoma is one of the leading causes of cancer related deaths world-

wide. Percutaneous needle-based tumor ablation is a minimally invasive treatment

method for liver tumors in patients that are not candidates for surgery. In order to

prevent recurrence, it is crucial that the right volume of tissue and a safety margin

around the tumor are completely ablated during treatment. Although magnetic reso-

nance imaging and computed X-ray tomography are currently used for monitoring the

procedure, ultrasound imaging is potentially safer and more cost-effective and can also

provide real-time high frame rate imaging capabilities. Information about tissue stiff-

ness obtained using ultrasound elastography can play an important role in locating the

boundary of ablated tissue and help in planning and execution of the ablation procedure.

The goal of this dissertation is to develop robust signal processing algorithms to

delineate ablation boundaries based on stiffness variations estimated from high frame

rate radiofrequency ultrasound echo data. Shear wave velocity is used as a surrogate

for tissue stiffness. A method called electrode vibration elastography is used where the

ablation needle is vibrated using an actuator and acts as a line source for shear waves.

The shear wave pulse is tracked in the imaging plane as it travels laterally away from this

line source. Model based denoising algorithms are developed to track the shear wave

pulse and reconstruct two dimensional (2D) shear wave velocity images.

In order to generate three dimensional (3D) visualizations of the ablated volume from

2D imaging planes, multiple 2D imaging slices are acquired in a sheaf geometry, with the
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ablation needle coinciding with the axis of the sheaf. Shear wave velocity information

from the individual 2D imaging planes can be used to reconstruct transverse or C-planes

that are stacked to generate a 3D visualization. The reconstruction is performed using a

penalized least-squares algorithm. A computationally tractable iterative reconstruction

algorithm that can handle 3D grids with millions of points is also developed.
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1

Introduction

If thou examinest a man having

tumors on his breast, thou findest that

swelling have spread over his breast;

if thou puttest thy hand upon his

breast upon these tumors, . . . , they

form no fluid, they do not generate

secretions of fluid, and they are

bulging to thy hand . . .

Edwin Smith Surgical Papyrus,

Case 45 (ca. 17th c. BC)

Motivation

Palpation, i.e., physical examination by pushing with the hand or fingers, has been

used for locating shallow lesions since times immemorial. Although useful as a first pass,

this method is not quantitative. Moreover, manual examination may not reveal stiffness

variations due to lesions that are present deep inside the body. Tissue elasticity imaging,
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or “elastography,” attempts to differentiate between various tissue structures based on

local variations in stiffness. In general, an elastography system consists of a method for

generating displacements in a region of interest inside the body (“remote palpation”)

and a system for inferring elasticity properties by measuring these displacements using

a medical imaging modality, like magnetic resonance imaging (MRI) or ultrasound.

Elastography The problem of boundary delineation for tumor visualization has

been an important signal processing issue in various medical imaging modalities. Since

liver tumors may not have sufficient echogenic contrast vis-á-vis healthy liver tissue

[1, 2, 3], visualizing them on a conventional “B-mode” image is challenging. Ultrasound

elastography attempts to derive local mechanical properties of tissue from estimated

displacements [4]. It has the potential to augment traditional B-scans and assist the

clinician in delineating ablation boundaries more accurately. Unlike X-ray computed to-

mography (CT) or MRI, traditional ultrasound elastography has been limited to single

imaging planes, over which strain is estimated, and the Young’s modulus (stiffness) is

reconstructed by solving the inverse problem [5, 6, 7, 8]. Shear wave velocity (SWV)

and shear modulus can also be estimated for these imaging planes [9]. The accuracy of

such methods is limited by the underlying assumptions about tissue elasticity and other

geometric and boundary effects.

Liver Cancer Liver cancer is one of the most common forms of cancer in the world

and is one of the leading cause of cancer related deaths [10]. Tumor ablation therapy

is a minimally invasive procedure that can be used to treat smaller localized tumors.

Radiofrequency (RF) and microwave ablation procedures involve insertion of an ablation

needle into the affected area and inducing localized heating to thermally coagulate the
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cancerous cells. Accurate and rapid visualization of the ablated region has clinical value

because it can provide immediate feedback to the clinician about the extent of ablation.

Controlling the ablation volume is crucial for preventing recurrence of tumors, arising

from the presence of untreated cancerous cells.

The work presented in this dissertation is motivated by the need for robust signal

processing methods for ablation boundary delineation as applied to percutaneous needle

based liver tumor ablation treatment procedures. The algorithms are primarily designed

for electrode vibration elastography (EVE); it uses the ablation needle to generate a shear

wave pulse which is tracked in the region of interest using ultrasound [6]. Since ablation

is accompanied by stiffening of tissue [11], the speed of this shear wave can be used to

demarcate the region that has been treated successfully. With the assumption that tissues

are elastic and isotropic and ignoring any high frequency dispersive effects, it is possible

to relate shear wave velocity (SWV) cs and the elastic shear modulus G via the relation:

cs =

√
G

ρ
[1.1]

where ρ is the density of the medium. Ignoring the effects of viscosity, cs remains

constant as a function of frequency. It is also worth noting that the Young’s modulus (E)

of an incompressible elastic material whose Poisson’s ratio is close to 0.5 is related to its

shear modulus by

G ≈ E/3. [1.2]

It is worth noting that these assumptions may fail to hold for anisotropic media. For

instance, when estimating mechanical properties of muscle tissue, the SWV along the

muscle fibers is usually higher than the velocity in the perpendicular direction [12]. The

linear elasticity assumption fails to hold for the case of large displacements because soft
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tissue may stiffen as the applied strain increases [13]. Moreover, in viscous tissue, the

stiffness varies as a function of frequency [14].

Various algorithms for estimating the velocity of shear waves traveling through dis-

parate media are developed. These algorithms allow two dimensional (2D) mapping of

SWVs in the imaging plane. Algorithms for generating three dimensional (3D) recon-

structions from parsimoniously acquired data are also developed and analyzed.

Outline

Chapter 2 reviews existing literature about hepatocellular carcinoma, treatment and

the role of 2D and 3D ultrasound elastography in ablation procedures and some relevant

signal processing literature on 2D and 3D shear wave elastographic reconstruction and

boundary delineation.

Chapter 3 discusses electrode vibration elastography, a technique for generating

shear waves using an ablation needle, and tracking it using ultrasound. The data acqui-

sition system is described, and methods for beamforming, displacement estimation and

wavefront localization are discussed.

Chapter 4 presents various data models for efficient boundary delineation in 2D

shear wave elastography. In particular, a Markov model is proposed for shear wave

arrival time data in the presence of noise. The model accounts for the a priori ignorance

about the number and locations of stiffness change points, and practical algorithms with

desirable theoretical properties are developed using ideas from maximum a posteriori

estimation.
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Chapter 5 extends 2D reconstruction algorithms to 3D by reconstructing multiple

2D image planes around the ablation needle using algorithms from Chapter 4 and as-

sembling them into a 3D visualization from a stack of transverse “C-planes.”

Chapter 6 develops a kernel based function approximation algorithm using the

Matérn kernel which provides a data-adaptive way of choosing the level of smooth-

ness in the final 3D reconstruction. This can be useful for reconstructing the transition

region between soft and stiff regions after ablation.

Chapter 7 describes a method for reconstructing the complete 3D volume without

resorting to the intermediate step of reconstructing individual transverse planes. A

sparse matrix based iterative algorithm is developed using a Markov random field model

which enables reconstruction of 3D grids with millions of grid points.

Supplementary material (such as pseudocode for algorithms, mathematical proofs

and derivations) is presented in the Appendices.
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2

Literature Review

If I have seen further, it is by standing

on the shoulders of giants.

Isaac Newton

2.1 Hepatocellular Carcinoma and its Treatment

Hepatocellular carcinoma (HCC) or liver cancer is one of the leading causes of cancer

related deaths in the world with almost 750,000 deaths reported worldwide in 2012 [15].

It is also one of the most common forms of cancer with very high mortality index of 95%

[16]. Patients with chronic liver conditions such as hepatitis B, hepatitis C, or cirrhosis

have a greater predilection for developing HCC [17]. HCC is the most prevalent type of

primary liver cancer. Secondary liver cancer may be caused due to metastasis of cancer

from the breast, lung or colon. Other less common types of primary liver cancers include

fibrolamellar HCC [18], hepatoblastoma and bile duct carcinoma [19, Ch. 8].

A variety of factors need to be considered before choosing a treatment option for HCC

patients. The decision is typically based on the size and number of malignancies and an

estimate of overall liver function (such as the Child-Pugh score) [17]. Treatment methods

can involve surgical techniques such as resection, transplantation, localized ablation,
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or chemotherapeutic methods such as transcatheter arterial chemoembolization (TACE)

[20]. For early stage patients, surgical extirpation may be used, especially if the rest of

the liver is functioning well. Patients with tumors less than 3–5 cm in diameter may be

well suited for localized ablation therapy or ethanol injection to kill the cancerous cells

[21]. According to the Barcelona Clinic Liver Cancer staging system, early stage patients

are well suited for percutaneous treatments [22].

Localized treatment methods have been an area of active clinical research because

they are minimally invasive and can be used for patients that are not candidates for liver

transplantation or surgery due to underlying comorbidities. Although randomized clin-

ical trials have not yet provided any conclusive evidence of the superiority of localized

techniques over surgical methods or transplantation [23], minimally invasive procedures

such as radiofrequency (RF) or microwave ablation have lower risk of post-surgical com-

plications [20, 24]. There is also some clinical evidence for better 3 year survival rates

after RF ablation than ethanol injection in for patients with early stage chronic liver

disease and tumors smaller than 3 cm in diameter [25].

RF and microwave ablation have a similar principle of operation in that they use

electromagnetic energy to heat tissue to over 50◦C resulting in cell necrosis. For RF

ablation procedures, an RF electrode operating at a frequency of around 500 kHz is

inserted directly into the tumor. The electrical conduction circuit is completed through

the tissue surrounding the electrode and a grounding pad, and heat is generated as a

result of resistive heating accompanying the flow of RF current [26].

Although microwave ablation also uses electromagnetic energy, it differs from RF

ablation in the heat generation mechanism. Microwave ablation antennas usually operate

at over 900 MHz [27]. This induces oscillations in the water molecules in the surrounding

tissue and some of the energy is dissipated as heat. Since microwave heating does
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not depend on the presence of a conductive path for electrons, it has the potential to

provide larger and more uniformly treated ablation volumes. However, clinical studies

comparing RF and microwave ablation treatment for HCC have not found any difference

in survival and recurrence rates [28, 29, 30]. Research has recently shown over 70%

survival rates after microwave ablation [31].

2.2 Ultrasound-based Monitoring of Liver Ablation

Two-dimensional (2D) B-mode ultrasound imaging is widely used during liver ab-

lation procedures because of the convenience of low cost, absence of ionizing radiation

and real-time operation. The ablation needle appears hyperechoic in a traditional B-

mode scan, and hence provides an accurate and cost effective method for guiding nee-

dle placement in the tumor. Many commercial ultrasound scanners implement needle

guidance modes which use image processing algorithms to emphasize the location of

the needle and its tip [32, 33, 34]. Needle mounting brackets attached to the ultrasound

transducer ensure that the needle stays in the ultrasound imaging plane.

Tumors, on the other hand, may be difficult to delineate using B-mode images be-

cause they may possess similar echogenic properties as background tissue. As a result,

stiffness variations may not manifest consistently as echogenicity variations in B-mode

images. Liver tumors have been reported to be hypo-, iso- or hyper-echoic in different

patients [35, 1]. Ablation reduces the water content of tissue and the ablated region casts

a shadow underneath due to increased attenuation in the ablated tissue [36]. Gas bub-

bles that are generated around the ablation needle appear hyperechoic and introduce

artifacts in the B-mode image and also attenuate the ultrasound signals from the distal



9

(a) (b)

Figure 2.1: (a) B-mode ultrasound imaging is commonly used for needle guidance dur-
ing percutaneous needle-based ablation procedures. (b) Ablation results in cell necrosis
due to protein denaturation and removal of moisture from the treated tissue, which also
results in an increase in stiffness.

boundary of the ablation [37]. Hence, although B-mode images may be used to approx-

imately locate the treated volume, they are not reliable for delineation of the ablation

boundary.

Ablation of tissue results in protein denaturation and removal of moisture which is

accompanied by stiffening relative the surrounding unablated tissue [38]. Therefore ul-

trasound elastography can provide a more direct method for delineating ablation bound-

aries. An elastography system consists of three components: (a) a method to apply force

and produce displacements, (b) a method to track these displacements, and (c) an algo-

rithm to process the displacement information to infer mechanical properties. Following

the pioneering work by Ophir et al. [39, 40] on estimating displacement and strain,

ultrasound elastography has now evolved into a multitude of imaging techniques that

attempt to estimate various mechanical properties such as Young’s modulus and vis-

coelastic parameters.
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Magnetic resonance imaging (MRI) can be used for estimating mechanical properties

of tissue by estimating displacements. When a harmonic excitation is applied to the

medium imaged using an MR scanner, the shear wave displacements get encoded as

phase shifts in the nuclear magnetic resonance signal [41]. Magnetic resonance elastog-

raphy (MRE) [42, 43] can be used to image C-plane sections of the liver and produce

shear stiffness maps. However, in the presence of a metallic ablation needle it can-

not be used to provide real time feedback about the size of the ablation, unless special

MR-compatible ablation probes are used. On the other hand, ultrasound elastography

has the potential to provide immediate feedback during ablation allowing clinicians to

change ablation parameters in real time.

Ultrasound elastography techniques can be classified based on the method used for

generating displacements and mechanical property reconstruction from the measured

displacements. Quasi-static strain imaging methods either rely on manual palpation or

using the transducer to compress the tissue to be imaged. However, external compres-

sion may not be effective for imaging stiffness variations that may be present deep inside

the body. For the specific application of needle based ablation procedures, electrode dis-

placement elastography (EDE) is a quasi-static method that uses the ablation needle to

generate micron-level displacements that are tracked using ultrasound. This information

can be used to generate 2D and 3D strain images of the ablation [44, 45, 46, 47, 46, 48].

In dynamic or transient elastography, an external mechanical device is used to gener-

ate displacements that are subsequently tracked using ultrasound. Sandrin et al. [49, 50]

use an assembly of vibrating rods placed adjacent to the ultrasound transducer to pro-

duce shear wavefronts in the image plane. Electrode vibration elastography (EVE) devel-

oped by Varghese et al. is a transient elastography method well suited for monitoring of

percutaneous needle based ablation procedures [6, 7, 51]. The ablation needle is vibrated
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using an external actuator and acts as a line source of shear waves. The shear wave pulse

travels outward and away from the ablation needle and is tracked using high frame rate

ultrasound as it propagates in the imaged medium.

Tissue can be remotely palpated with the ultrasound beam using the acoustic radia-

tion force (ARF) phenomenon. It involves transmission of a short duration high energy

focussed ultrasound beam in the region of interest. The resulting pushing force is a func-

tion of the intensity of the acoustic wave and the absorption properties of the tissue. In

its simplest form, ARF can be used to produce displacements at different locations in the

imaging plane and an image of the magnitude of these displacements can be displayed

(with the assumption that stiffer areas will undergo a smaller displacement than softer

areas) [52]. Local strain images can be obtained by calculating spatial derivatives from

this displacement information. An ARF impulse can also be used to generate a shear

wave that can be tracked to reconstruct shear wave velocity images [53] and local shear

modulus properties [54].

Supersonic shear wave imaging (SSI) generates a line source of shear waves by multi-

ple ARF push pulses along a line to produce a ‘Mach cone.’ This plane shear wavefront

travels perpendicular to the line source [55]. The inverse problem of recovering shear

wave velocity and shear modulus from this method has also been studied [56, 9]. Song

et al. [57] use a “comb push” technique by setting up multiple line sources in the image

plane resulting in shear wavefronts traveling in opposite directions which are separately

tracked after directional filtering. Crawling wave sonoelastography [58, 59] makes use

of two interfering shear waves of slightly different frequencies and uses the interference

patterns to derive Young’s modulus of the imaged medium.

Another approach aims at mapping viscoelastic properties of tissue by imaging shear

waves over a range of frequencies to estimate frequency dependent dispersion of shear
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waves together with the Young’s modulus [60, 61, 62]. Frequency dependent shear wave

velocity measurements can also be made using crawling waves [63] and spatially modu-

lated ultrasound radiation force (SMURF) imaging [64].

There are potentially unlimited configurations and methods for generating shear

waves using mechanical excitation depending on the apparatus and the clinical appli-

cation. The present work focuses on electrode vibration [6, 7] for inducing shear waves

with the target application being real-time monitoring of tumour ablation in the liver.

An advantage of this method in monitoring liver ablation is that shear waves can be

generated in vivo by vibrating the same radio frequency-electrode or microwave antenna

that is being used for the ablation procedure. In contrast to radiation force type tech-

niques, electrode vibration can be used to obtain larger vibration amplitudes that can be

tracked over longer distances in tissue.

2.3 Reconstruction Algorithms for 2D Shear Wave Imaging

Transient shear wave elastography involves tracking of shear wavefronts in the un-

derlying medium using ultrasound displacement estimation techniques. The location of

these wavefronts as a function of time can be used for estimating SWV and hence the

shear modulus. As is the case with most ultrasound based systems, presence of noise

and outliers in unfiltered ultrasound data must be mitigated to attain sufficient signal-

to-noise ratios necessary for successful clinical application of this method. The present

work proposes various model-based denoising algorithms for SWV reconstruction from

noisy ultrasound displacement data. The propagating shear wave consists of a single

pulse which is tracked through the imaging plane by recording the time taken for the

peak of this pulse to reach different lateral locations in the imaging plane. This process is
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repeated at different depths in the imaging plane. This data is referred to as time-to-peak

(TTP) data [54] or time-of-flight data [65].

There are various function fitting and denoising methods that have been applied to

the problem of filtering noisy TTP information. Palmeri et al. [54] apply linear regres-

sion followed by statistical goodness of fit criteria. Wang et al. [65] apply the random

sample consensus (RANSAC) algorithm to address the issue of outliers. They model

the TTP curve as a linear function of the spatial coordinates with the coefficients as free

parameters to be estimated. The RANSAC algorithm proceeds by randomly drawing

subsets of the full dataset. Next, it calculates the parameters of the hypothesized linear

model using a least-squares fit and then identifies and removes possible outliers at each

iteration. A specific cost function is used to gauge the quality of fit.

Rouze et al. [66] proposed using the Radon sum transform for estimating SWV in a

single medium. Using a three dimensional map of lateral location, time and displace-

ment the algorithm extracts a trajectory in the lateral location vs. time plane that gives

the maximum sum of displacements. This trajectory is assumed to be the path of propa-

gation of the shear wave. Intuitively, this method gives the best fit line along the locations

of the displacement peaks thereby smoothing out the effect of noise.

In a preliminary study, Bharat et al. [6] discuss the phenomenon of change in the

slope of the TTP profile when a shear wave travels through an interface between dif-

ferent media. A least-squares fit is applied to the noisy TTP data prior to calculating

the slope of the curve at various lateral locations for estimating SWV and locating any

slope change points. Various algorithms to automatically and reliably detect these slope

change locations of the TTP curve are developed in this dissertation. TTP slope change

detection is an important problem as it indicates the presence of a transition boundary

between regions of different stiffnesses.
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As an alternative to the TTP approach, McLaughlin et al. [9] use correlation based

pattern matching to locate a shear wave pulse of a known shape at different locations in

the medium. The issue of noise smoothing is handled implicitly by use of the Eikonal

equation thereby avoiding derivatives of noisy data and circumventing the issue of solv-

ing an ill-posed inverse problem. In another recent paper, Klein et al. [67] present an

improved correlation based method for estimation of shear wave arrival times by us-

ing a penalized optimization procedure to account for the phenomenon of pulse shape

broadening.

In a more recent paper, Zhao et al. [68] analyze the effect of ultrasound imaging

system parameters such as transducer, frequency and imaging depth on SWV estimates

obtained using acoustic radiation force. They use a novel plane wave ultrasound insoni-

fication technique and software beamforming which allows much higher frame rates

than traditional focused ultrasound imaging. The SWV reconstruction algorithm applies

a least-squares fit to the TTP measurements.

It is also possible to calculate SWV by directly inverting the wave equation [69]. This

method involves taking higher order time and spatial derivatives of displacement esti-

mates obtained from any standard ultrasound-based motion tracking algorithm. How-

ever, this method is fraught with noise, notwithstanding the use of standard noise re-

duction techniques such as median filtering for removing outliers and mean filtering for

smoothing.

A theoretical analysis of the complete signal processing chain employed in a stan-

dard ultrasound based SWV imaging system was presented in a paper by Deffieux et al.

[70]. Using methods from classical estimation theory, they derive a Cramér-Rao lower

bound on the variance of any unbiased estimator of shear modulus when the shear wave

propagates in a homogeneous linearly elastic medium with no interfaces. Tracking the
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propagation of a shear wavefront through multiple media is more challenging due to

uncertainty regarding wave velocities within different media and exact locations of in-

terfaces. As a result, direct application of statistical function fitting techniques provides

no theoretical guarantees on detecting the interfaces and slopes accurately. Viewed from

the point of view of TTP data, this problem is equivalent to fitting a continuous piece-

wise linear function with unknown slopes, unknown breakpoints and unknown number

of segments.

The need for piecewise linear regression arises in many different fields, as diverse

as biology, geology, and the social sciences. The algorithms developed here are general

enough to be applicable to other fields, although the main application of interest is

ultrasound shear wave elastography. In many real world applications, the local slope

values of an observed noisy function have interesting physical interpretations. Most of

the existing methods do not directly address slope estimation; rather, they attempt to

fit a model to the data. Instead, directly estimating the slopes and breakpoints is useful

when the slopes correspond to the variables of interest and the breakpoints correspond

to where those variables change.

The topic of slope estimation from noisy data is quite old; an early paper can be traced

back to 1964 where the popular Savitzky-Golay differentiator [71] was introduced. Their

main idea is to use a locally windowed least squares fit to estimate the slope at each data

sample, where the window coefficients are chosen to satisfy a certain frequency response

that mimics a high pass filter together with some level of noise averaging. Another sim-

ilar technique that is used in statistics is called locally weighted least squares regression

(LOWESS) [72]. However, these methods undesirably smooth out the breakpoint loca-

tions in when data has sharp transitions or jumps. In contrast, model-based techniques
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can be used to preserve sharp transitions (for instance, by explicitly allowing for sharp

slope transitions using a Markov model).

In some situations, the raw data can be massaged using a preprocessing step so that

it becomes piecewise linear. The simplest example is the case of piecewise constant data

— the running sum (integral) of such data yields a piecewise linear function. Ratkovic

and Eng [73] discuss a statistical spline fitting approach combined with the Bayesian

information criterion (BIC) to detect abrupt transitions in political approval ratings. As

a special case, their method can be applied when function values stay almost constant

over long intervals and occasionally shift to a new value. In another application, Bai

and Perron [74] use statistical regression techniques to detect multiple regime shifts in

interest rate data.

Closely related problems of piecewise linear regression for noisy data have been

addressed over the years. For example, an early paper by Hudson [75] focuses on a

technique to obtain piecewise linear fits in a least-squares sense with only two segments.

The break point location is included as a parameter in the least squares optimization

problem. The method is extended by dealing with multiple breakpoint locations on a

case-by-case basis which becomes combinatorially intractable as the number of break-

points increases. Bellman [76] suggests a dynamic programming approach when the

number of breakpoints is unknown. However, this method requires the use of a large

number of grid points for accurate results. Gallant and Fuller [77] generalize this to

the fitting of arbitrary polynomials with unknown breakpoints while requiring the func-

tion to be composed of segments with continuous first derivatives. They apply a non-

linear optimization routine (Gauss-Newton minimization) to fine-tune breakpoint loca-

tions while minimizing the squared error relative to the data. Another non-parametric

approach involves use of edge preserving penalized optimization such as total variation
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minimization [78]. Denison et al. [79] use a Markov chain Monte Carlo approach to

fit piecewise polynomials with different numbers and locations of knot points. Tishler

and Frey [80] discuss a maximum likelihood approach to fit a convex piecewise linear

function expressed as a point-wise maximum of a collection of affine functions with

unknown coefficients. Maximum likelihood estimates are obtained by running a con-

strained optimization routine for a smoothed approximation of a mean squared error

(MSE) cost function to bypass non-differentiability issues. A similar data model coupled

with data clustering heuristics is utilized in a more recent paper by Magnani and Boyd

[81] on fitting convex piecewise linear functions.

The use of adaptive methods is an attractive way of handling the issue of unknown

number of breakpoints. One of the first algorithms using this technique was proposed

by Friedman [82] under the name “adaptive regression splines (ARES).” Recursive parti-

tioning is used to obtain better partitions of the set of data points at each iteration. Either

goodness of fit criteria or generalized cross validation is used to estimate the number of

partitions. On similar lines, Kolaczyk and Nowak [83] apply the method of recursive

dyadic partitioning and fit a smooth function in each partition using maximum likeli-

hood estimation. A penalty term for the number of partitions is introduced to trade off

model complexity and quality of fit. In recent work, Saucier and Audet [84] propose a

different class of adaptively constructed basis functions that can capture the transition

points in otherwise piecewise smooth functions.

In [85] Bai and Perron discuss the problem of detecting structural changes in data

without requiring the estimated function to be piecewise linear or even continuous. Their

related paper [74] discusses a dynamic programming approach to obtain a least sum of

squares fit. The model order is determined by using the Akaike information criterion

(AIC) [86] and they impose a minimum limit on the “run length” of each segment in
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the piecewise model. In contrast, the present work proposes a dynamic program that

generates optimum maximum a posteriori (MAP) estimates based on a stochastic finite

state hidden Markov model.

In the signal processing literature, two kinds of paradigms have been applied to this

problem — Bayesian estimation and pattern recognition approaches. Punskaya et al. [87]

model the function using the number and locations of the breakpoints as free parameters

with certain prior distributions. The posterior density of the parameters conditioned on

the noisy data is estimated through Monte Carlo techniques. In response to this method,

Fearnhead [88] proposes a direct method for estimating parameters of the same model

without resorting to Monte Carlo simulations and exploiting a Markov property in the

model that allows calculation of the probability of future data points conditioned on the

most recent breakpoint location.

2.4 Regularized Reconstruction Methods in 3D Elastography

Two dimensional (2D) ultrasound has been widely applied to tissue stiffness mea-

surements in ablation monitoring procedures in the liver [47, 46, 48, 89]. 2D electrode

vibration shear wave imaging method can be extended to three dimensions (3D) by uti-

lizing RF echo signals acquired over a “sheaf” of imaging planes. A sheaf is defined as

a collection of planes that intersect along a common axis. This method of acquisition

is naturally suited to electrode vibration elastography where shear wavefronts travel

outward from the vibrating needle resulting in a cylindrical wavefront, with the needle

acting as a line source.

There has been growing interest in 3D ultrasound imaging and elastography; one

evidence being the evolution of literature on this topic in the last two decades. Elliott

[90] notes the increasing use of 3D data acquisition among ultrasound sonographers
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to circumvent the limitations of traditional 2D ultrasound. Various authors have ana-

lyzed reconstruction algorithms for 3D B-mode imaging [91, 92] of different anatomical

structures using a variety of transducer types and scanning arrangements. Quasistatic

freehand elastography has received much research attention [93, 94]. These 2D elastog-

raphy techniques can be naturally extended to 3D in various ways. Freehand elastog-

raphy can be performed by manually translating the transducer probe through parallel

imaging planes. Alternatively, a “wobbler” that mechanically rotates or translates an

array transducer using a stepper motor may be used. Other authors have proposed

using more elaborate robotic techniques [95] for accurate control of the location of the

transducer in 3D space. Each image plane is processed using standard elastography

algorithms and a 3D rendering is generated [96]. Freehand elastography can be aug-

mented with accurate optical [97] or magnetic position sensors that precisely record the

coordinates of the transducer. Fortunately, for tumor ablation monitoring using EVE,

the ablation needle provides a good reference for manually aligning the imaging plane.

Elaborate tracking and registration systems have the potential to improve reconstruc-

tion accuracy. The present work uses only a crude alignment strategy relying on the

assumptions that the underlying 3D structure is fairly symmetric about the needle axis,

independent sheaves (with relatively small misregistration errors) are acquired, and the

final 3D reconstructions are averaged. This averaging operation can be used to reduce

misregistration errors, assuming these errors are small and zero mean.

Results on 3D quasi-static strain [45, 98] and transient SWV reconstruction [99] for

prostate imaging have been reported in literature. These methods typically utilize a 1D

array transducer to acquire data over multiple image planes. For instance, a wobbler can

be used to obtain elevational slices, or a rotating probe can be used to obtain angularly

spaced azimuthal slices. Strain images can be reconstructed on each image plane using



20

standard quasi-static elastogram reconstruction techniques, and the individual planes

can be stacked together to produce a 3D rendering of the strain. Lee et al. [100] have

reported significant improvement in detection of cancerous breast lesions when B-mode

imaging is augmented with freehand 3D shear wave imaging. Literature on full 3D re-

construction of SWVs and shear stiffness is still quite nascent. In recent work by Wang

et al. [12], 3D reconstruction of muscle fiber orientation was achieved by mapping group

and phase velocities of the shear wave wave set up using acoustic radiation force. Al-

though the use of matrix transducer arrays for volume ultrasound imaging is gathering

pace, linear and curvilinear array transducers are still the most widely used transducer

types. Therefore, the ability to generate volume rendering akin to CT or MRI using 2D

ultrasound data has clinical value [90].
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3

Electrode Vibration Elastography

“. . . we have described a new,

quantitative method for imaging the

elastic properties of compliant tissue.

. . . The method could become useful

in a number of applications.”

J. Ophir, et al., Elastography: a

method for imaging the elasticity of

biological tissues

3.1 Introduction

The raison d’être of an elastography system is to create an image of mechanical

elasticity properties of the underlying medium. Some of the earliest work in ultrasound

elastography involved development of tissue displacement estimation methods using ul-

trasound echo data with the help of cross-correlation based or Doppler based techniques

[101, 102, 103]. The opening quote of this chapter is from an early paper on ultrasound

elastography [39] which demonstrated the use of ultrasonic echo data to produce a map

of tissue strain in the image plane. Modern elastography algorithms are now capable
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of estimating various mechanical properties that include strain, Young’s modulus, shear

wave velocity (SWV), shear modulus, and viscoelastic parameters. These properties are

estimated from local tissue displacements and an assumed model for tissue elasticity.

An image of elasticity properties is called an “elastogram.” In general, an ultrasound

elastography system consists of three distinct components:

1. a method for generating displacements,

2. a method for tracking these displacements across frames, and,

3. an algorithm for estimating stiffness properties from these displacements.

The third step is not necessary if the desired elastogram only consists of displacement

information.

Vibration of the ablation needle is a unique method applicable to the case of ablation

monitoring where the needle is already in place for treating the tumor. The technique

is therefore called electrode vibration elastography (EVE). This chapter describes the ex-

perimental setup used for EVE which includes a vibrating actuator that is operated in

synchronization with the ultrasound scanner. The design and use of tissue-mimicking

(TM) phantoms used for experimental validation of the algorithms developed in this

dissertation is also described. Since shear waves can travel at quite high speeds, it ne-

cessitates the use of high frame rate ultrasound acquisition to track these waves in the

imaged medium. One method involves phase-locked acquisition which uses multiple

vibrations to assemble “pseudo-high frame rate” data. The second method uses plane

acoustic insonifications to bypass the low frame rate limitation of traditional focused

transmit acquisitions.
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A cross-correlation based displacement estimation algorithm is used in the second

step to obtain a displacement movie across all frames. In its simplest form, this al-

gorithm calculates axial displacements (in the direction of ultrasound beamlines, also

called A-lines) by cross-correlating segments of radiofrequency (RF) echo data in a small

neighborhood along the A-line. 2D displacement tracking can be used to correct for lat-

eral displacements by running the cross-correlation algorithm along the beamlines and

also laterally across A-lines.

A shear wave pulse can be tracked in both space in time with the knowledge of par-

ticle displacements in each frame. Ignoring any dispersive effects due to viscoelasticity,

the wave equation (Helmholtz equation) can be inverted to calculate shear wave velocity

[69]. This method is difficult to use in practice because it requires calculation of spatial

and temporal second order derivatives from noisy displacement data. In EVE, it is as-

sumed that the shear wave pulse propagates purely laterally and the wave velocity can

be estimated from times of arrival at different locations away from the needle.

This chapter describes the three components of an EVE system — the data acquisi-

tion setup which produces the shear wave perturbation and captures RF echo data, the

displacement estimation routine which calculates frame-to-frame displacements, and the

assumed shear wave propagation model used for the various image reconstruction algo-

rithms developed in subsequent chapters.

3.2 Experimental Setup

3.2.1 Tissue-mimicking Phantoms

The phantom based study involved data acquisition from two TM phantoms with

similar design but slightly different mechanical properties[96]. Both phantoms consist
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of a centrally situated stiff ellipsoid in a softer background material which simulates the

presence of a tumor in cirrhotic liver tissue. The stiff ellipsoid is intended to model an

ablated region. An irregular tumor structure whose stiffness was in between the ablated

region and the background material was attached on one side of the ellipsoid. The

phantom material is composed of a dispersion of microscopic oil droplets in a gelatinous

matrix. The difference in stiffness is mainly achieved by controlling the proportion of oil

in the material; a detailed discussion about the design and properties of such phantom

materials is given in the paper by Madsen et al. [104]. A stainless steel rod was bonded

to the center of the ellipsoid in order to mimic the role of a radio-frequency electrode or

a microwave antenna in an actual ablation procedure. This rod was used for generating

shear waves in the phantom with the help of an actuator. A representative cross-sectional

view of the structure of both phantoms is shown in Fig. 3.1. The gelatin block was 14

cm×14 cm×9 cm. This block was placed in an open top 1 cm thick acrylic container.

A layer of safflower oil about 2 cm deep was poured over the top surface to prevent

desiccation.

Soft background (b)

Stiff elllipsoid inclusion (e)

Irregular tumor region (t)

Safflower oil

Needle

Acrylic container

9 cm

14 cm

1 cm

Figure 3.1: A schematic representation of the cross-sectional view of the two phantoms.
This diagram is not to scale.
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3.2.2 Data Acquisition Setup

Ultrasound echo data was acquired using an Ultrasonix SonixTouch machine (Ul-

trasonix Medical Corporation, Richmond, BC, Canada) and a software tool developed

using the Ultrasonix Software Development Kit [7]. The 9L4 linear array transducer op-

erated at a frequency of 5 MHz was used for obtaining ultrasound RF echo data. The

transducer has a 6 dB bandwidth of 33%, a transmit F-number of 2.6 an acoustic pulse

duration equal to 1 transmit cycle of the operating frequency of 5 MHz. The effective

line density was equal to the number of elements i.e. 128 lines over a lateral extent of 3.8

cm.

Shear wave pulses are generated by vibrating the needle using a piezoelectric actuator

(Physik Instrumente (PI) GmbH, Karlsruhe, Germany). The actuator produces a half-

sine wave pulse of 100 µm amplitude and 30 ms width. In order to synchronize data

collection and pulse generation, the actuator controller is set up to trigger the ultrasound

scanner and the actuator simultaneously. A schematic view of an EVE setup is shown

in Fig. 3.2. A pulse deformation applied to the needle sets up a shear wave pulse where

the wave source is a line coinciding with the needle and the shear wavefronts travel

cylindrically outward and away from this line. Ignoring any viscoelastic attenuation, the

amplitude of this cylindrical wavefront decays as the square root of the distance away

from the needle.

3.3 Displacement Tracking

3.3.1 Sequential Tracking

Since the frame rates with traditional B-mode ultrasound imaging are not sufficient

to track a shear wave pulse (which travels with a velocity of a few meters per second), a



26

Actuator

controller

Phantom

Ultrasound

transducer

Ultrasound

scanner

Image

plane

Actuator

Needle

Figure 3.2: This schematic shows the data acquisition system used in electrode vibration
elastography experiments. The needle is vibrated using an actuator. Data acquisitions
are phase-locked by synchoronizing the ultrasound scanner pulse sequencing with the
actuator motion. The image plane is adjusted in such a way that it contains the needle.

sequential tracking technique developed by DeWall and Varghese [7] can be used. This

method is similar to the phase locking technique used in MR elastography [105]. In this

method, the needle is vibrated multiple times and with each vibration a different location

at a specified lateral distance away from the needle is scanned using the ultrasound

system (Ultrasonix SonixTouch, Richmond, BC, Canada). Vertical strips of RF ultrasound

echo data are then registered and assembled to obtain an apparent high frame rate frame

sequence over the entire image plane. The phase-locked acquisition scheme assumes that

the needle is vibrated identically in each cycle and the image plane is not changed during

the acquisition. For in vivo application, additional motion filtering and synchronization
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may be needed to account for patient motion. Alternatively, a high frame rate plane

wave imaging technique that does not require multiple perturbations can be used.

3.3.2 Plane Wave Tracking

High frame rate plane wave ultrasound imaging [106] can be used to scan the en-

tire image plane in a single transmit. The idea is similar to synthetic aperture imaging

[107], however all the transducer elements are activated simultanously to produce a

plane acoustic wavefront, instead of firing each element individually to generate spher-

ical wavefronts. Plane wave imaging operates by setting the focal depth to infinity and

using an aperture size equal to the number of elements in the linear transducer array.

In the absence of steering, this is equivalent to applying zero delays to the transducer

elements. As soon as the transmit sequence is completed, the ultrasound scanner re-

ceives parallel channel data simultaneously for each transducer element bypassing the

hardware beamformer.

In general, the plane wave can be transmitted at an arbitrary angle α as shown in

Fig. 3.3. Let x and z denote the lateral and axial dimensions respectively with the ori-

gin of the coordinate system is fixed at the left edge of the transducer. Let d denote

the distance between consecutive transducer elements and consider the acoustic energy

received at element # n after scattering from a particle at location (x, z) in the image

plane.

The acoustic energy scattered by this particle at location (x, z) is received at differ-

ent elements of the array with different delays depending on the total path length and

the speed of sound. The beamformer must coherently sum up the contributions from

this particle by applying appropriate delays to the pre-beamformed scan lines for each

receive element of the transducer. Let sn(t) denote the raw prebeamformed channel
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α

n dx

z

(x, z)

(0, 0)

z cosα

x sinα

√

z2 + (x− n d)2

d

α

plane wavefr
ont

Figure 3.3: Angular insonification with plane waves requires some geometrical calcula-
tions for beamforming. The total path length can be expressed in terms of the angle α
and the coordinates of the arbitrary pixel (x, z).

waveform received at element # n in the array. Then the beamformed signal for location

(x, z) in the image plane is given by:

s(x, z) =
a/2

∑
n=−a/2

wnsn(τα(x, z, n))

where a denotes the aperture over which the summation occurs, wn is a window function

and τα(x, z, n) is the total time delay for the acoustic wave to travel from the transducer

to the particle at (x, z) and its reception at element # n. Using the geometry depicted in

Fig. 3.3, the time delay is given by:

τα(x, z, n) =
1

vs

(
(x sin α + z cos α) +

√
z2 + (x− n d)2

)

where vs is the speed of sound (assumed 1540 m/s).
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Since, in practice, the beamformer must process sampled data, all the variables in the

beamforming equations are discretized as follows:

n ∈ {0, 1, 2, . . . , 127}

x ∈ {0, d, 2d, . . . , 127d}

z ∈ {0, 1, 2, . . . , # axial samples}.

The time delay τ is rounded off to the nearest integer and used to index into the pre-

beamformed channel data sn.

The beamformed RF data frames are averaged to generate the final compounded

image.

3.4 Shear Wave Pulse Propagation Model

The shear wave pulse vibration results in a displacement field which depends on

both the spatial coordinates and time t. Assuming that the ablation needle acts as a line

source of plane shear wave fronts traveling laterally (in the x direction) in the image

plane, with purely axial displacements uz, the wave equation can be written as:

µ
∂2

∂x2
uz(x, t) = ρ

∂2

∂t2
uz(x, t). [3.1]

Here µ is the shear modulus of the medium and ρ is the density [108], and the equation

suggests a constant shear wave velocity of
√

µ
ρ . When using a linear array transducer to

image the medium, all measurements are restricted to the x− z plane.

Although the shear wave velocity can be calculated directly by inverting the wave

equation it is seldom used in practice because it requires taking the second spatial and
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time derivatives of noisy displacement measurements. Instead, the “time of arrival” of a

shear wavefront propagating purely in the lateral x direction in a homogeneous medium

can instead be used to calculate SWV from the Eikonal equation [108, Thm. 2.3]:

∣∣∣∣
d

dx
Ta(x)

∣∣∣∣ =
1

cs
[3.2]

where the time of arrival Ta(x) = arg inft>0|uz(x, t)| > 0, i.e. the first time instant when

the displacement at a given location x is non-zero.

In practice, due to the noisy nature of displacement estimates obtained from ul-

trasound data, using the definition of Ta(x) directly in an algorithm is not advisable.

Typically, the practical approach involves using more information such as the peak of

the wavefront which may be easier to estimate from noisy data [7, 54]. Alternatively, the

shape of the wave packet can be used in as part of a cross-correlation [109, 9] or an elastic

matching [67] algorithm. For the data acquired from the experimental setup described

in Section 3.2, the location of the pulse peak is estimated with subsample precision by

fitting a quadratic polynomial using five samples around the peak. The following propo-

sition suggests that under certain idealizing assumptions about the wave propagation,

using the time of arrival calculated using the wave peak also satisfies (3.2).

Proposition 3.1 Assume a half-sine wave shaped shear wave pulse traveling with a

velocity cs in a homogeneous medium with no diffraction and attenuation. The dis-

placements can be described by uz(x, t) = uz(x− ct) = A cos
(

π
W (x− ct)

)
for −W/2 ≤

x − ct ≤ W/2 and 0 otherwise, where A is the amplitude and W is the pulse width.

Then the time of peak Tp(x) = arg maxt>0|uz(x, t)| satisfies (3.2).
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Proof: In the absence of pulse shape broadening due to diffraction (i.e., ignoring

viscoelastic effects),

Tp(x) = arg maxt>0|uz(x, t)|

= arg maxt>0 1[−W
2 , W

2 ](x− ct)A cos
( π

W
(x− ct)

)

= arg inft>0 1[−W
2 , W

2 ](x− ct)A cos
( π

W
(x− ct)

)
+

W

2

= Ta(x) +
W

2
,

where 1 is the “indicator function” defined as:

1A(t) =





1 if t ∈ A

0 if t /∈ A.
[3.3]

For future reference, the complement of this function is defined as 1c
A(t) := 1− 1A(t).

This implies that d
dx Tp(x) = d

dx Ta(x) and hence Tp(x) also satisfies (3.2). �

SWV reconstructions are obtained for each scan plane using the time to peak algo-

rithm [54]. A shear wave pulse is produced by vibrating the needle using an actuator,

and multiple frames of RF ultrasound data are acquired simultaneously. The scan se-

quence and reconstruction algorithm is discussed in more detail in the paper by DeWall

et al. [7]. Displacements between consecutive frames are estimated using a 1D cross-

correlation algorithm and the peak displacements at each pixel are recorded to localize

the shear wave pulse in space and time. The reciprocal of the slope of a plot of the time

of arrival of the shear wave pulse as a function of lateral distance away from the needle

is used to estimate shear wave velocity at each pixel in the scan plane [110]. As shown in

Fig. 3.4, the line source of shear waves is assumed to coincide with the needle, and the
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Figure 3.4: This figure shows an idealized time-to-peak (TTP) plot, i.e. a plot of Tp(x)
vs. lateral distance x at a fixed depth z for an EVE experiment. The local slope of this
plot is equal to the reciprocal of the SWV and the slope change points correspond to the
stiffness boundaries.

wave pulse is tracked on either side of the needle along lines of constant depth to create

an arrival time plot of Tp(x) vs. x.

3.5 Results

Although a single plane wave insonification can provide ultrafast frame rates of over

10,000 frames/s, single plane wave transmit is seldom sufficient to obtain good quality

RF data useful for displacement estimation. Images created from a single plane wave
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transmit possess much lower lateral resolution than traditional focussed transmit ultra-

sound images. The presence of hyperechogenic regions in the imaging plane causes a

“hazy” appearance in laterally adjacent regions, as seen in Fig. 3.5. Similar artifacts were

reported previously in a paper by Montaldo et al. [111].

When such RF data frames are used in a displacement estimation routine, the poor

lateral resolution causes ambiguity in the location of the shear wave pulse. An axial

displacement movie from an electrode vibration TM phantom experiment is shown in

Fig. 3.6. A shear wave pulse can be clearly visualized in the top half of the image plane

traveling from left to right, however, the location of the peak of the wave is difficult

to follow in the lower half of the image. The lower half of the image contains “false”

displacements that bleed laterally from the motion of the hyperechoic region.

Fig. 3.7 shows B-mode images of a point target phantom imaged using angular com-

pounding method. Observe that the haze that extends laterally from the point targets

is significantly reduced when multiple angular transmits are compounded. Angular in-

sonifications reduce the imaging frame rate by a factor equal to the number of angles

used. This, however, does not pose a serious drawback in practice because a frame rate

of around 1000 frames/s is sufficient to track a shear wave pulse.
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Figure 3.5: When using a single plane wave insonification to image a hyperechoic re-
gion, the bright areas in the image bleed into the hypoechoic regions due to the lateral
spread of the point spread function. This causes a hazy appearance in the B-mode image
outlined using the arrows. The effect on displacement estimates is shown in Fig. 3.6.
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Figure 3.6: This movie of axial displacements shows false displacement peaks that pre-
vent reliable tracking of the shear wave pulse in locations laterally adjacent to the hyper-
echoic region. Note that the false displacement region (shown with the pink arrows) is
correlated with the hazy region in the B-mode image from Fig. 3.5. The image plane con-
sists of a stiff inclusion in the higher echogenic region surrounded by softer background
material.



36

0

1 1.5 2 2.5

0

0.5

1

1.5

2

−10:1:10

1 1.5 2 2.5

0

0.5

1

1.5

2

−10,−5,0,5,10

1 1.5 2 2.5

0

0.5

1

1.5

2

−10:2:10

1 1.5 2 2.5

0

0.5

1

1.5

2

Figure 3.7: The lateral spread of point targets in a point target phantom is significantly
reduced with plane wave compounding as seen in these images. The subplot titles
denote which angles are compounded to produce the final image.
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4

Markov Model for Shear Wave Tracking

One should not regret the past. One

should not worry about the future.

Wise men act by the present time.

Sanskrit proverb

A Markov chain is a random process

with the property that, conditioned

on its present value, the future is

independent of the past.

G.R. Grimmett, D.R. Stirzaker,

Probability and Random Processes

4.1 Introduction

One of the main assumptions used for generating shear wave velocity (SWV) im-

ages from high frame rate displacement data is that of purely lateral propagation. This

assumption rests on the fact that the particle displacements produced after needle vi-

bration are perfectly parallel to the direction of vibration of the needle. Hence (at least
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in the region where the needle is bonded to the surrounding tissue), it is reasonable to

assume that the wave motion is similar to an ideal transverse wave. This means that

the shear wave pulse travels laterally along the face of the transducer, while all particle

displacements are axial.

This chapter proposes various model based statistical signal processing algorithms

for solving this inverse problem of inferring SWV from information about wave arrival

times. The arrival times are estimated by tracing the time-to-peak (TTP) displacement as

a function of distance away from the needle along lines of constant depth. However, in

practice, the measured TTP data can be quite noisy, and some form of noise suppression

must be applied before finite differencing can be used to obtain SWVs. Moreover, the

wave may travel through different stiffness interfaces causing abrupt changes in SWV. It

is important to detect these changes because in the ablation application they correspond

to boundaries between treated (ablated) and unablated tissue.

The first model uses a “brute force” approach by describing the TTP data as a piece-

wise linear function with an unknown number and locations of breakpoints. Supposing

the number of breakpoints is known, the problem is reduced to a multi-parameter non-

convex optimization problem. A model order selection criterion is used to choose the

most parsimonious model i.e. the piecewise linear fit that explains the noisy data with

the fewest breakpoints possible.

The second model presented here encodes the ignorance about the number and lo-

cations of breakpoints into a hidden Markov model framework where the local slope

values (i.e. SWVs) play the role of hidden states. A particle filter is designed to unravel

the most likely sequence of slopes from noisy data. Since particle filtering can be compu-

tationally burdensome, a second approximate algorithm that uses a discrete set of slope

values is proposed.
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Finally, these algorithms are validated synthetic data, data from finite element simu-

lations and experimental data obtained from tissue-mimicking (TM) phantoms.

4.2 Piecewise Linear Fitting Problem

The TTP data obtained over each image plane can be used to estimate SWV by calcu-

lating the reciprocal of the slope of the TTP curves at different depths. However, some

form of smoothing must be applied prior to calculating the slope because differentiating

noisy data will amplify noise. An important consideration for this noise filtering algo-

rithm is to preserve edge details between the stiff inclusion and the soft background.

An optimization algorithm that fits a continuous piecewise linear function to the noisy

TTP curves [112] is designed with a function model parametrized by the locations of

breakpoints and slopes of individual segments. Let the number of segments in the fit

be denoted by B, the unknown breakpoint locations by {λi}B
i=0 and unknown segment

slopes by {mi}B
i=1. A piecewise linear function is modeled as:

f (x) =
B−1

∑
i=0

1[λi,λi+1)
(x)

[
mi+1(x− λi) +

i

∑
j=1

mj(λj − λj−1)

]
[4.1]

where 1 denotes the indicator function defined in (3.3).

A specific case of the piecewise linear function model with B = 3 is shown in Fig. 4.1.

It is assumed that the noisy TTP data, {yi}N
i=1, originates from this true underlying

function. Therefore a constrained least-squares problem can be formulated to estimate

the free parameters in this model:

minimize
1

N

N

∑
i=1

(yi − f (xi))
2

subject to mi > 0, and λ0 < λ1 < . . . λB.
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Figure 4.1: A piecewise linear model with unknown breakpoints (λ1, λ2) is used for
estimating local slope values (m1, m2, m3). The reciprocals of these slope values are used
as estimates of local shear wave velocities at different lateral locations away from the
electrode.

The least-squares optimization problem is solved using a standard sequential quadratic

programming [113] numerical optimization routine. Other methods such as interior

point optimization, log-barrier algorithms, or stochastic optimization methods such as

simulated annealing [114] can also be used.

In reality, the number of segments B is not known a priori. Therefore the algorithm

must choose a reasonable B automatically. This problem of “model order selection”
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is handled using the Akaike information criterion (AIC) [86] which trades off mean-

squared error and model complexity by minimizing the following function by choice of

B:

AIC = N log(MSE/N) + (2B− 1)

where MSE is the residual mean squared error between the data and the fit. The intuition

behind using this criterion is that it not only penalizes a bad fit (large MSE) but also

penalizes the number of segments (model complexity), thereby providing a safeguard

from over-fitting. The optimization problem is solved with 1 ≤ B ≤ 10 and the best B is

chosen to minimize AIC.

4.3 Hidden Markov Model

A shear wave can be assumed to travel with a constant speed as long as it propagates

in the same homogeneous medium, but the speed changes when it enters a dissimi-

lar medium via an interface. Therefore, to a first approximation, an ideal TTP curve

should appear to grow linearly with a constant slope, except at interfaces, where the

slope should abruptly change to a new value. Ultrasound imaging at high frame rate

can be used for tracking axial tissue displacements as a function of time from which

the TTP can be computed for various lateral locations. These signal processing steps

leading up to the TTP estimates introduce some noise, which will be assumed to have a

Gaussian distribution. A stochastic hidden Markov model can be formulated to repre-

sent the physical phenomenon of the traveling shear wave together with this noisy TTP

measurement.

The following notation is used to describe the hidden Markov model. Let

Zn be the actual (noiseless) value of the TTP curve at a lateral location n
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Xn be the noisy measured value of the TTP curve

wn be i.i.d. Gaussian noise with density N (0, σ2).

Sn be the most recent slope value of the curve

Un be a continuous valued uniformly distributed random variable

Mn be a two dimensional “state variable,” (Zn, Sn)

Bn be a Bernoulli random variable with p(Bn = 0) = p and p(Bn = 1) = 1− p for

some 0 < p < 1.

Individual components of a vector are denoted using superscripts. For instance, R(l) is

used to denote the lth component of a vector R. The shorthand notation Rl:l+m is used to

denote the set of vectors {Rl, Rl+1, . . . , Rl+m}. It is assumed that the TTP data is obtained

at equally spaced sampling points along the lateral dimension. Hence it is possible to

normalize the distances to 1 unit per sample.

The relationship between these random variables can now be summarized as follows:

Zn+1 = Zn + Sn [4.2]

where

Sn+1 =





Sn if Bn = 0

Un if Bn = 1

and

Xn = Zn + wn [4.3]

for n ≥ 0, with the initial distribution S0 ∼ U0.
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These equations model the presence of interfaces in a probabilistic manner. At any

lateral location the shear wave continues to propagate in the same medium with a prob-

ability p or encounters an interface with a probability 1− p and the slope switches to

a new values chosen uniformly randomly over some reasonable interval [cl, cu] of mini-

mum and maximum possible shear wave speeds. In most practical scenarios, the value

of p can be chosen to be close to 1 because one expects to propagate through very few

interfaces.

A hidden Markov model belongs to a more general class of dynamical models that

can be characterized by a “state evolution equation” and an “observation equation.” In

their standard forms, the state evolution equation relates the current state to its imme-

diate predecessor and the observation equation relates the output of the system to its

current state. The stochastic model that generates the noisy TTP data can be cast into

this standard form as follows:

Mn+1 =




M
(1)
n + M

(2)
n

(1− Bn)M
(2)
n + BnUn


 [4.4]

and

Xn = M
(1)
n + wn. [4.5]

The dependence between various random variables involved in this model are picto-

rially represented in Fig. 4.2.

4.4 Particle Filter

The goal of a filtering algorithm is to unravel the most likely state values given a set of

observed data, that is, to provide a good estimate for {M1, . . . , MN} given {X1, . . . , XN},
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Figure 4.2: A pictorial representation of the relationships between various random vari-
ables (input, hidden states and output) of the hidden Markov model is shown here.

where N is the number of data points. When the state space is continuous valued, one

of the ways of solving this problem is through particle filtering. A brief discussion of the

concept of particle filtering is included here for completeness. Detailed description of

various embellishments in the basic algorithm and implementation issues are discussed

in a tutorial article by Arulampalam et al. [115]. Some practical implementation issues

and simulation results with real world examples are discussed in the paper by Gilks

and Berzuini [116]. Development of the theory behind optimality of particle filters for

hidden state estimation when the noise distribution is not Gaussian can be found in the

paper by Bergman et al.[117].

Particle filtering is a Monte Carlo technique that calculates the approximate probabil-

ity density function of the state variables conditioned on observed data. This is achieved

by traversing all the data points sequentially and updating the density estimate based
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on an application of Bayes’ rule. Particle filtering methods have been applied in the con-

text of quasistatic elastography [118] and for sequential tracking problems in medical

imaging [119, 120]. Bayesian methods have been previously used for motion tracking

[121, 122] using RF ultrasound data.

Suppose that the algorithm is at the kth data point out of the N available observations.

The joint density of all the states up to the kth data point can be expressed approximately

as a weighted sum of dirac-delta functions as:

p(M0:k|X1:k) ≈
Ns

∑
i=1

ωi
kδ(M0:k −Mi

0:k) [4.6]

where Ns is the number of points used in the discrete approximation, {Mi
k}

Ns
i=1 is a set

of random points in the state space, and {ωi
k}

Ns
i=1 is a set of corresponding weights that

satisfy ∑
Ns
i=1 ωi

k = 1. The number of points Ns is typically quite large (∼ 103 − 104) so

that the discrete approximation is close to the actual continuous density function.

For the dirac-delta approximation to hold, each random point Mi
k must be drawn

according to the density function p(M0:k|X1:k). However, since this probability density

function is unknown, a special technique of importance sampling [115, 116] is used to

generate these points. The points {Mi
0:k}

Ns
i=1 can instead be generated from a different

“importance sampling density” function q(M0:k|X1:k). The dirac-delta approximation

will continue to hold provided the weights {ωi
k}

Ns
i=1 are normalized proportional to the

ratio
p(Mi

0:k|X1:k)

q(Mi
0:k|X1:k)

. The advantage of this scheme is that the sampling density q can be

chosen arbitrarily. Suppose that the sampling density is factorizable as q(M0:k|X1:k) =

q(Mk|M0:k−1, X1:k)q(M0:k−1|X1:k−1). Then the new sample set can be obtained by simply

appending to the old set {Mi
0:k−1}

Ns
i=1 a new set of random points {Mi

k} for the current

state. These new points can be drawn i.i.d. from the density q(Mk|M0:k−1, X1:k). Next,
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using Bayes’ rule, the weight-update equation becomes:

ωi
k = ωi

k−1

p(Xk|Mi
k)p(Mi

k|Mi
k−1)

q(Mi
k|Mi

0:k−1, Xk)
. [4.7]

Moreover, since the main goal is to estimate only the current state, the dirac-delta ap-

proximation can be modified to:

p(Mk|X1:k) ≈
Ns

∑
i=1

ωi
kδ(Mk −Mi

0:k) [4.8]

by marginalizing over the previous states. A convenient choice for the sampling density

is:

q(Mi
k|Mi

0:k−1, Xk) = p(Mi
k|Mi

k−1) which leads to the weight update equation given by:

ωi
k = ωi

k−1 p(Xk|Mi
k). [4.9]

This choice of the sampling density makes computational implementation tractable. The

state evolution and observation equations are both accessible and are used for generating

the random samples and updating the weights, respectively.

In the course of generating new state samples from the old ones and updating the

weights, particle filters face the issue of degeneracy. This is a phenomenon where most

of the sample points stray into the low probability density region of the density function

thereby carrying almost zero weight. This prevents an accurate representation of the

high density areas of the density function. A procedure called “resampling” can be

applied to bypass this issue [115]. Resampling generates a modified particle set from

a degenerate particle set in such a way that a majority of the sample points remain

concentrated in high probability density regions.
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As a further fallout of the resampling procedure, in the worst case all the particles

tend to collapse to a single point and there is a loss of diversity in the set of samples

that are being used for approximating the density function. To counteract this, a regu-

larized particle filter implementation is used in this paper where a random perturbation

is added to each point after resampling. Under certain assumptions [123], the optimal

choice for these perturbations is the Epanechnikov kernel. This choice follows from re-

sults on kernel density estimation which show that this kernel generates a minimum

variance estimate of the density function [124].

The expected value of the current state can be obtained from the density estimate as:

E[Mk|X1:k] =
Ns

∑
i=1

ωi
k Mi

k. [4.10]

Moreover, the variance of this estimate can also be calculated:

Var[Mk|X1:k] = E[(Mk)
2|X1:k]− (E[Mk|X1:k])

2 [4.11]

where the square is taken elementwise. This may be of limited value in practice because

clinicians are seldom interested in variance at a fixed point and are more interested in

the distribution of values on a larger region of interest (ROI).

The sequential filtering procedure outlined above does not exploit the fact that data

is available for batch processing for the ultrasound shear wave tracking problem. Bet-

ter smoothing estimates may be obtained if the observations from the future are also

incorporated into the current state estimation step. This can be done using a lookahead-

window smoothing method that waits for L samples into the future before generating
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the current state estimate as

E[Mk|Y1:k+L] =
Ns

∑
i=1

ωi
k+L Mi

k. [4.12]

Choosing L to be very large has pitfalls of oversmoothing [125] and wasting some data

samples towards the end of the dataset. As a further improvement, Doucet et al. also

propose the “fixed lag smoothing” algorithm [125] which runs a backward smoothing

step to update the weights according to:

ω̂i
k =

Ns

∑
j=1

ω̂
j
k+1

ωi
k p(M

j
k+1|Mi

k)

∑
Ns
l=1 ωl

k p(M
j
k+1|Ml

k)

for k = n− 1, . . . , 1 and ω̂i
n = ωi

n. Note that this is computationally more burdensome

to implement in real-time applications (because of the need to process and store N2
s

different values of p(M
j
k+1|Ml

k) at each k). Therefore this last equation is only used

in evaluation of the HMM approach in simulations; the lookahead-window smoother

is used for the experimental data. The pseudocode for these algorithms is listed in

Appendix B.

4.5 Discrete State Approximation

An implicit assumption in the Markov model developed here is that the slopes can

take on values on a closed bounded interval [cl, cu] with upper and lower limits 0 < cl <

cu < ∞ known a priori. For instance, in the ultrasound-based wave tracking application,

the values of cl and cu can be obtained from the underlying physics which dictates that

such mechanical waves travel with speeds between 0.5 to 10 m/s in homogeneous tissue.

With the knowledge of cl and cu, the given data vector can be translated and rescaled
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so that all slope values lie in the interval [0, 1]. Hence, without loss of generality, it

suffices to design a slope estimation algorithm that operates with a finite set of slopes

S = {0, 1
(M−1)

, . . . , M−2
M−1 , 1}. Intuitively, this quantization step is justified because in the

presence of noise it is impossible to detect the difference between slope values that differ

only slightly.

4.5.1 Maximum a Posteriori (MAP) Estimation

The probabilistic structure of the data generation process can be expressed using a

conditional density function of the unknown function values conditioned on the ob-

served data vector. Let pZ0:N |X1:N ,θ(Z0:N = z0:N |X1:N = x1:N, θ) be the posterior proba-

bility density of the function values z0:N conditioned on the observed data points x1:N.

The goal of the inference problem is to unravel the most likely sequence of hidden states

(slope values s1:N) that produced the observed function values x1:N. This can be posed

as a MAP estimation problem where the posterior density of the unknown states condi-

tioned on the observed data is maximized.

Proposition 4.1 Suppose

Z0 = 0 with probability 1,

Zn = Zn−1 + Sn, [4.13]

Xn = Zn + wn

for n = 1, . . . , N where wn are i.i.d N (0, σ2). A Markov structure is imposed as follows:

Sn =





Sn−1 with probability p

Un with probability 1− p
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for n = 2, . . . , N where Un ∼ U ({0, 1
(M−1)

, . . . , M−2
M−1 , 1} \ {Sn−1}) denotes a discrete uni-

form random variable taking on one of M− 1 possible slope values and the initial slope

value is drawn uniformly as S1 ∼ U ({0, 1
(M−1)

, . . . , M−2
M−1 , 1}). Then the states Zn form a

HMM second-order Markov chain.

Proof: Using (4.13), it is easy to switch between the random variable Zn and Sn by

invoking the recursive relationship Zn = Zn−1 + Sn. The first two states are handled as

special cases. Note that p(Z0 = z0) := 1 for z0 ≡ 0, and p(Z1 = z1|Z0 = z0) = p(S1 =

z1) = 1/M for z1 ∈ S and 0 otherwise. Also,

p(Z2 = z2|Z1 = z1, Z0 = z0) = p(S1 + S2 = z2|S1 = s1)

= p(S2 = z2 − z1|S1 = z1 − 0)

= p(S2 = z2 − z1|S1 = z1 − z0)

which depends only on z2, z1 and z0, since Z0 = 0 with probability 1. In general, for

3 ≤ n ≤ N,

p(Zn = zn|Z0:n−1 = z0:n−1) = p(Zn−1 + Sn = zn|Z0:n−1 = z0:n−1)

= p(zn−1 + Sn = zn|Z0:n−1 = z0:n−1, Zn−1 − Zn−2 = zn−1 − zn−2)

= p(Sn= zn−zn−1|Z0:n−1= z0:n−1, Sn−1= zn−1−zn−2)

= p(Sn = zn − zn−1|Sn−1 = zn−1 − zn−2)
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which only depends on zn, zn−1 and zn−2. Hence Zn is a second-order Markov chain.

The transition probabilities can be written explicitly as:

p(Zn= zn|Zn−1= zn−1, Zn−2= zn−2) =





p for zn=2zn−1−zn−2

0 for zn < zn−1 [4.14]

1− p

M− 1
otherwise

for 3 ≤ n ≤ N. �

The posterior density can be further simplified using Proposition 4.1 and Bayes’ the-

orem as follows:

p(z0:N |x1:N, θ) =
p(x1:N |z0:N, θ)p(z0:N |θ)

p(x1:N |θ)

=
p(x1|z1, θ)p(z1|z0, θ)

p(x1:N |θ)
N

∏
j=2

[
p(xj|zj,θ)·p(zj|zj−1,zj−2,θ)

]
. [4.15]

For MAP estimation, it convenient to work with the log posterior density derived

using (4.14) and (4.15):

log p(z0:N |x1:N, θ) = − log p(x1:N |θ)−
N

2
log(2πσ2)− 1

2σ2

N

∑
n=1

(xn − zn)
2

+
N

∑
n=2

log

[
p 1{0}(sn−sn−1)+

1−p

M−1
1c
{0}(sn−sn−1)

]
. [4.16]

where 1A(t) is the indicator function for the subscripted set A, as defined previously in

(3.3).

In a standard HMM, this maximization problem is efficiently solved using a dynamic

program called the Viterbi algorithm [126]. For the present model, the standard Viterbi

approach cannot be applied because of the second-order transition structure coupled
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with the fact that the state space of the hidden state Zn changes with n. Two algorithms

to solve the MAP estimation problem for the present model are shown in this section,

including a computationally tractable dynamic program discussed in Section 4.5.1.1.

The MAP optimal slope sequence can be obtained by maximizing (4.16) as a function

of the slope sequence, which is equivalent to the following optimization problem:

s∗1:N = arg maxs1:N

(
− 1

2σ2

N

∑
n=1

(xn − zn)
2 +

N

∑
n=2

log

[
p 1{0}(sn − sn−1)

+
1− p

M− 1
1c
{0}(sn − sn−1)

])
. [4.17]

The term containing p(x1:N |θ) is dropped because it does not depend on s1:N . Besides

producing the MAP optimal solution, the objective function has certain intuitively ap-

pealing characteristics. The first summation on the right hand side of (4.17) is just the

sum squared error, which must be minimized. The second summation acts like a penalty

term that encourages longer runs of constant slope. In general, MAP estimation prob-

lems are non-trivial owing to the presence of multiple local maximizers and computa-

tional complexity associated with optimization of multi-variable functions. Fortunately,

the present maximization problem can be handled efficiently by taking a piecemeal ap-

proach furnished by the dynamic programming principle [127]. The following algorithm

differs from the standard forward-backward algorithm used with HMMs which only

handles one level of hidden states.

4.5.1.1 Dynamic Program

The objective function in (4.17) is a sum of individual terms that depend only on

zn, sn and sn−1. One way of visualizing a maximization algorithm is using the trellis in

Fig. 4.3 where each depth n shows the possible values k that the state Zn can realize.
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n = 0 n = 1 n = 2 n = 3

0

1

2

3

4

5

6

s1 = 0

s1 =
1

2

s1 = 1

Zn

Depth (n) →

State
(k)
↓

Figure 4.3: A representative diagram of a trellis structure used for finding the MAP
optimal slope sequence. This trellis is shown with slope values quantized into three bins
and a data vector length of 4.

Each branch has an associated branch “reward” which corresponds to individual terms

of the summation in (4.17). The peculiarity about this trellis is that each branch has a

variable reward depending on the previous branch chosen along the optimizing path.

A dynamic program called FastTrellis is shown in Fig. B.4. This algorithm works by

storing the optimum path vector Π(n, k) and its associated reward I(n, k) coming into

each node k at every depth n of the trellis. The path that maximizes the partial sums

in (4.17) is chosen as the optimal path for each node. For each 1 ≤ n ≤ N, the path

vectors Π(n, k) and cumulative rewards I(n, k) are updated by appending new nodes to

the optimal paths terminating at nodes at the previous depth n− 1.

Note that the branch rewards referred to in the innermost loop of FastTrellis are

composed of two terms: the first term is the negative squared error with respect to the

data and the second term is an additional reward for maintaining the same slope value

as the previous data sample. The final output of this algorithm contains the best path

reaching the deepest level in the trellis and the value of the maximized sum shown in

(4.17). Referring back to Proposition 4.1, it is also worth noting that the pseudocode



54

shown in Fig. B.4 implicitly converts the second order Markov structure on the Zn pro-

cess into a first order Markov process by keeping track of a pair of values, viz., the

recent slope value sn = zn− zn−1 and the previous slope value sn−1 = zn−1− zn−2, when

deciding the branch cost.

It is instructive to compare the computational complexity of this procedure vis-á-vis

a standard Viterbi algorithm that operates on a constant height trellis. The basic unit

of computation is assumed to consist of two floating point additions, one floating point

multiply and one compare — these operations are needed for calculating the rewards for

each branch in the trellis in Fig. 4.3. The terms log p and log
(

1−p
M−1

)
can be precomputed,

hence do not enter the complexity analysis. The height of the trellis at any depth n

is n(M − 1) + 1. Therefore the worst case number of computations at depth n is of

the order O(n2M2). Summing over a total trellis depth of N levels, the worst case

computational complexity of FastTrellis is O(N3M2). Although this is worse than the

O(NM2) complexity [126] of a standard Viterbi algorithm with a constant trellis height,

it is still an improvement over a brute force approach which will require searching over

MN slope value sequences.

4.5.1.2 Smooth Optimization

The indicator functions in (4.17) cause the objective function to be non-differentiable.

This can be addressed by approximating an indicator using a narrow Gaussian pulse:

1{0}(t) ≈ exp

(
− t2

α2

)

where α controls the width of the roll-off. As α ց 0 a narrow spike of height 1 is

obtained at t = 0 thus approximating the indicator function with increasing precision.

After discarding terms that do not depend on s1:N , the following approximation to the
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optimization problem in (4.17) is obtained:

s∗1:N = arg maxs1:N

(
− 1

2σ2

N

∑
n=1

(
xn −

n

∑
j=1

sj

)2

+
N

∑
n=2

log

[
p e
− (sn−sn−1)

2

α2 +
1− p

M− 1

(
1− e

− (sn−sn−1)
2

α2

)])
. [4.18]

This smooth approximation of the original problem can be solved using standard

constrained optimization routines such as gradient descent [128, 113]. Although it does

not guarantee that the slope values lie in the discrete set S , this issue can be bypassed

either by rounding the slopes to the nearest quantization bins, or by using integer-

programming to solve the optimization problem. Algorithmic complexity of this method

varies based on the optimization algorithm used. In general, for a gradient descent type

approach that constructs a Hessian matrix of size N × N, the worst case complexity of

inverting the Hessian matrix is O(N3). This is similar to the complexity of the dynamic

programming method. It should, however, be noted that FastTrellis produces an exact

solution, whereas there is no guarantee that the optimization method will converge to

s∗1:N ∈ SN .

4.5.2 Alternating Maximization Algorithm for Estimating Model Param-

eters

Choosing the model parameters (σ2, p) is crucial to ensure a sensible fit to the noisy

data and enable numerical evaluation of the log posterior probabilities. Unfortunately,

these parameters that define the stochastic model are seldom known in advance. Al-

though reasonable values can be guessed by manually preprocessing the data, an auto-

matic method for choosing these parameter values is desirable. The Baum-Welch algo-

rithm which is a special case of expectation-maximization (EM) algorithm is a standard
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method for parameter estimation [129, 130, 131] in HMMs. In general, it is difficult to

prove that the EM procedure converges unless certain assumptions about the likelihood

function are made, unimodality being a common assumption [132]. Other approaches

include approximate EM iterations via Monte Carlo integration to approximate the ex-

pectation step [133].

Although it is easy to set up the EM iteration equations for the present model, it is

computationally intractable for larger values of M and N. A derivation can be found in

Section C.1. The following result provides a useful alternative re-estimation procedure

that bypasses the computational issues with the full EM approach. Unlike the EM ap-

proach which ascends the observed data likelihood function, the MAPSlope algorithm

ascends the complete data likelihood function by alternately maximizing with respect to

the slope sequence and the model parameters. So, it has a similar advantage as an EM

algorithm in that it increases the likelihood at each iteration. Under an additional minor

technical assumption, it can also be shown that the procedure converges.

Theorem 4.2 Let s1:N be the current slope sequence estimate, s∗1:N be the new sequence

estimate obtained by running FastTrellis with the current model parameter values

θ = (σ2, p). Let θ∗ = (σ∗2, p∗) be re-estimated from the new slope sequence estimate as:

σ∗2 =
1

N

N

∑
n=1

(
xn −

n

∑
j=1

s∗j

)2

[4.19]

and

p∗ =
1

N − 1

N−1

∑
n=1

1{0}(s
∗
n+1 − s∗n). [4.20]

Then the complete data likelihood function satisfies

p(x1:N, s1:N |θ) ≤ p(x1:N, s∗1:N |θ) ≤ p(x1:N, s∗1:N |θ∗).
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A similar idea for estimation of parameters in a generalized linear model can be found in

a recent paper by Yen [134]. The re-estimation equations can be understood intuitively —

the new estimate of σ2 is just the sample variance of the residual signal after subtracting

the current piecewise linear fit from the raw data; the new estimate of p is the relative

frequency of occurrence of samples where slope remains unchanged in the current fit. A

formal proof is presented in Section C.2.

This result suggests an alternating maximization algorithm [135] that iterates between

the slope sequence and the unknown parameters. It guarantees that the complete data

likelihood increases at each step through this iterative procedure. Note that this is differ-

ent from the analysis of the EM algorithm [132, 129] where the observed data likelihood

function values are non-decreasing. The alternating maximization steps can now be it-

erated until some termination criterion is met. In most practical examples this method

provides a reasonable fit in a few iterations. The complete algorithm called MAPSlope

is shown in Fig. B.5 in the appendix.

Assuming there is a lower bound on the noise variance, the following result relevant

to the convergence of MAPSlope algorithm can be proved:

Corollary 4.3 In addition to the hypotheses of Theorem 1, suppose there exists δ > 0

such that σ ≥ δ. Then the sequence of likelihood function values obtained via alternating

maximization iterations of (4.19) and (4.20) have a limit point.

A proof is presented in Section C.2. In order to make stronger claims about the properties

of this limit point, further assumptions are required [136] that do not hold in this present

scenario.

The re-estimation method may be applied when the smooth optimization method is

used instead of MAPSlope, in which case the complete algorithm becomes a special case

of alternating gradient ascent. However, the aforementioned convergence result does
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not apply because the slope sequence obtained using the smooth optimization method

is only an approximate maximizer.

4.5.3 Mean Squared Error Optimality Analysis and Model Order Selec-

tion

The aim of this section is to propose an empirical method for selecting the right num-

ber of quantization levels M for the set of slope values. Simple arguments from source

coding theory are used to obtain upper and lower bounds for the MSE performance of

the algorithm. This method can be applied directly to the sequence of estimated slope

values.

Assume that the slope values originate from a continuous amplitude Markov source

with amplitude levels in the interval [0, 1]. The goal is to characterize the performance of

a decoder that outputs discrete values from the set {0, 1
(M−1)

, . . . , M−2
M−1 , 1} such that the

MSE is minimized. With a slight abuse of notation, let Sn denote the true slope value

at sample n and let Ŝn be the slope estimated from noisy data. The MSE performance

metric is defined as:

MSE(M) =
1

N

N

∑
n=1

(Ŝn − Sn)
2 [4.21]

where the dependence on M is due to the fact that the algorithm that generates the

sequence Ŝn depends on M. Other metrics such as difference between the actual and

detected number of change points, and distance from the actual change points can be

used in practice, but are harder to analyze theoretically.

Lower bound for MSE performance Consider an omniscient decoder (oracle) that

knows the exact slope values output by the source in advance. The MSE of this decoder

can be used to obtain a lower bound on the MSE obtained using any decoder. The
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average error of this omniscient decoder (due to quantization) is given by [137]:

εLB(M) =

1
2(M−1)∫

0

x2dx +
M−1

∑
n=1

2n+1
2(M−1)∫

2n−1
2(M−1)

(
x− n

M− 1

)2

dx +

1∫

1− 1
2(M−1)

(x− 1)2dx

=
1

24(M−1)3
+

M−1

∑
n=1

1

12(M−1)3
+

1

24(M−1)3

=
1

12(M− 1)2
.

Upper bound for MSE performance Consider an ignorant decoder that tries to

minimize the MSE after discarding all input information. The MSE of this decoder

provides an upper bound to the MSE performance. More “intelligent” decoders that do

use the input information when deciding a slope value would have a lower MSE than

this ignorant decoder. A natural strategy for the ignorant decoder is to assume that each

input slope value is uniformly and randomly distributed over [0, 1], and hence the best

it can do is to announce a slope value that is nearest to 1
2 . When M is odd, the decoder

has a bin at 1
2 giving an MSE of 1

12 . If M is even, the nearest bin is always a distance of

1
2(M−1)

away from 1
2 . So, the upper bound on the average error can be written as:

εUB(M) =
∫ 1

0

(
x− 1

2
− 1

2(M− 1)

)2

dx

=
1

12
+

1

4(M− 1)2
when M is odd,

and,

εUB(M) =
1

12
when M is even.

Fig. 4.4(a) and 4.4(b) show the MSE through simulation on 1000 randomly generated

piecewise linear datasets each of length N = 50. The lower and upper bounds (LB and
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UB) derived above are also plotted. As one would expect, larger values of MSE are

obtained for larger σ2 values. Lower MSE values are obtained with larger values of p

because the slope changes less often when p is closer to 1. Note that the true parameter

values were provided as input to the FastTrellis routine during simulation.

(a) Varying noise variance (b) Varying jump probability

Figure 4.4: MSE of the FastTrellis algorithm on randomly generated simulated data
with (a) different noise variances and (b) slope change probabilities.

Two empirical conclusions can be drawn from these simulation results. First, a value

of M around 15–20 is sufficient to achieve the “flat regions” of the MSE(M) curves over

a reasonable range of p and σ2 values. Using values of M larger than 20 does not

give noticeable improvement in MSE. Secondly, it shows that the FastTrellis algorithm

performs quite well when the underlying data is generated with p close to 1 and σ2 ≤ 1.

Other model order selection methods may be employed to choose M. The fit can be

produced for a range of different values of M and the one that provides the smallest

residual sum of squares can be selected. A classical parameter selection method such as

leave-out-one cross-validation can also be applied. Use of information criteria such as
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AIC/BIC will require modification in the setup because the M slope values are already

specified in the current model; they are not estimated as part of the function-fitting

algorithm.

4.6 Particle Filter Results

4.6.1 Simulation Results with Synthetic Data

This section discusses simulation results involving synthetic piecewise linear data.

The results shown in Fig. 4.5 show that the particle filter outperforms four other smooth-

ing methods considered. It is not surprising that finite differencing of the raw noisy data

without any smoothing has the largest MSE as seen in the three subfigures.

Note that for any constant value of p, the particle filter outperforms other filtering

methods at all noise levels. It is also worth noting that the performance gap gradually

decreases as p increases from 0.85 to 0.95. This is because at larger values of p there

are fewer change points in the piecewise linear function (on average) and so the filtering

problem is “easier” in the sense that it only has one or two straight line segments.

In practice, the parameters p and σ2 and the upper and lower limits of the uniform

distribution are not known in advance. One way to bypass problem is by estimating

these values from the raw data and using these estimates as inputs to the particle filtering

algorithm. The value of p is set based on the ratio of the expected number of interfaces in

the physical experiment to the number of points in the dataset. The sample variance of

the raw data is used as an estimate for σ2. The lower limit for the distribution of Xn can

be set to any small positive number and a reasonable upper limit can be computed from

the raw data. In practice, small errors in the input values of p and σ2 did not affect the

final fit drastically. However, it is crucial that the lower limit for the uniform distribution
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(b) p = 0.90
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(c) p = 0.95

Figure 4.5: MSE of estimated slope values from three different noise filtering methods
applied to randomly generated piecewise linear data. Simulated piecewise linear data
was filtered using three different filtering algorithms (pf=particle filter, poly=4th order
polynomial, movav=moving average 10 point window, sg2=Savitzky-Golay quadratic
with 10 point span, sg3=Savitzky-Golay cubic with 15 point span, raw=no filtering).
Local slope values were estimated by finite differencing. MSE from 50 independent
simulated data vectors are presented in this figure. The particle filter provided the
lowest mean MSE.
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be set correctly. If this value is larger than the smallest slope in the data then the final fit

would be just a straight line with a slope equal to the lower limit.

Figure 4.6: SWV maps reconstructed from data obtained from the finite element simu-
lation model are shown here. The top row shows images reconstructed using a particle
filter, moving average 10 point window, Savitzky-Golay quadratic with 15 point span,
and Savitzky-Golay cubic with 20 point span, respectively from left to right. The bottom
row shows SWV values along a horizontal line at a constant depth of 3 cm. True SWV
profiles from the finite element model are shown with dotted lines.

4.6.2 Results from Finite Element Simulation Data

One image plane of a stiff ellipsoidal inclusion embedded in a soft background ma-

terial was simulated using a finite element model in ANSYS. This is similar to the

schematic shown in Fig. 3.1 without the irregularly shaped region. The shear modu-

lus of the inclusion was set at 50 kPa whereas that of the background was set at 5 kPa.

Both materials were modeled to be perfectly linearly elastic and incompressible with no
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viscosity. The needle was modeled using a stainless steel rod firmly bonded to the ellip-

soid, but free to slide along the surface adjoining the softer background material. More

details about the model can be found in the paper by DeWall et al. [7].

SWV images reconstructed from the finite element simulation data are shown in

Fig. 4.6. Compared to other smoothing methods, the particle filter not only preserves

the sharp boundary details but also provides a lower mean squared reconstruction error

as seen from the representative SWV profiles shown along a line at a constant depth of

3 cm. The spike near the center column is an artifact due to the needle.

MSE values were obtained along lines of constant depth on both sides of the needle.

The box plot in Fig. 4.7 shows a summary of these values for four different methods

used for obtaining SWV images from the noisy TTP image. The SWV image obtained

from the noiseless TTP image was used as the ground truth for obtaining each MSE

measurement. It can be seen that the particle filter provides the lowest median MSE

with smallest spread among the methods considered.

Variance of the estimated SWV values calculated using Eq. (4.11) SWV values can be

displayed for the clinician alongside the SWV image as seen in Fig. 4.8. Note the stray

high variance pixels occur at locations laterally away from the needle where the shear

wave pulse is more difficult to track due decreased peak displacement. However, most

of the pixels have a variance close to zero indicating that the SWV estimate are reliable.

4.6.3 Experimental Results from TM Phantoms

Ten independent datasets were obtained from each of the two TM phantoms us-

ing the experimental setup described previously in Section 3.2. In order to gauge the

performance of the particle filtering algorithm vis-a-vis existing imaging and data pro-

cessing techniques, SWV estimates were obtained from two other methods. In the first
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Figure 4.7: A finite element simulation model was used to export frame-to-frame dis-
placements which were processed using various algorithms to estimate SWV. Mean
squared reconstruction error in the SWV maps produced from the finite element sim-
ulation model are shown here, where the SWV from the finite element model was
used as ground truth. (pf=particle filter, movav=moving average 10 point window,
sg2=Savitzky-Golay quadratic with 15 point span, sg3=Savitzky-Golay cubic with 20
point span, raw=no filtering)

method, a simple least-squares fourth order polynomial fit was used to filter the raw

TTP data. Young’s modulus was calculated using (1.1). SWV and shear modulus esti-

mates obtained from these four different methods (EVE with particle filtering, EVE with

least-squares filtering, SSI and mechanical testing) are summarized in Table 4.1. Test

metrics were calculated for the SWV maps obtained using both the particle filter and

the least-squares filter. These are shown in Table 4.2. Standard deviations are calculated

from individual SNR, C and CNR values in dB obtained from each of the ten datasets.
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Figure 4.8: Since the SWV values are obtained using a Bayesian model, the posterior
density can be used to produce a variance image that provides feedback about the reli-
ability of the SWV estimates. The variance image in (b) is calculated using Eq. (4.11) for
each pixel in the SWV image in (a). The SWV image is generated using finite element
data.

Table 4.1: Shear wave velocity and Young’s modulus estimates using particle filter

Phantom-1 Phantom-2

e t b e t b

EVE

SWV PF (m/s) 3.07± 0.7 2.02± 0.32 0.91± 0.31 4.68± 1.3 2.99± 0.4 1.32± 0.68

SWV LS(m/s) 3.14± 0.79 1.96± 0.23 1.16± 0.12 4.56± 0.75 3.1± 0.32 2.09± 0.2

E PF (kPa) 29.6± 13 12.6± 3.8 2.74± 1.5 70.6± 52 27.3± 6.9 6.62± 9.5

E LS (kPa) 31.5± 18 11.7± 2.7 4.07± 0.86 63.9± 21 29.2± 6 13.2± 2.4

SSI
SWV (m/s) 2.8± 1.1 2.3± 0.8 1.3± 0.4 4.1± 1.8 2.4± 1.4 2.1± 0.7

E (kPa) 24.2± 5.8 13.3± 3.5 4.8± 0.5 50.1± 10.5 17.6± 4.8 13.6± 1.6

ELF E (kPa) 56.57± 0.25 24.74± 0.63 4.55± 0.06 41.05± 0.20 20.52± 0.54 15.10± 0.80

Values of SWV and Young’s modulus of different regions in the two phantoms obtained from particle
filtering (PF) and least-squares filtering (LS) applied to the TTP data. Corresponding values obtained from
the Supersonic Imagine scanner and mechanical testing are also indicated. (e = ellipsoidal inclusion, t =
irregular tumor region, b = background).

Sample outlines are shown in Figs. 4.11 and 4.12. Area estimate results are summarized

in Table 4.3.
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(c) SWV PF
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(d) SWV LS

Figure 4.9: Results from shear wave tracking in Phantom-1 are shown. (a) B-mode
image of the phantom, (b) TTP map for the shear wave pulse at various locations in the
phantom, (c) SWV map generated by applying the particle filtering (PF) algorithm to
denoise the TTP data followed by lateral gradients to obtain wave velocity, (d) same as
(c) but with a least-squares (LSQ) polynomial fit instead of the PF.
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(d) SWV LSQ

Figure 4.10: Results from shear wave tracking in Phantom-2 are shown. (a) B-mode
image of the phantom, (b) TTP map for the shear wave pulse at various locations in the
phantom, (c) SWV map generated by applying the particle filtering (PF) algorithm to
denoise the TTP data followed by lateral gradients to obtain wave velocity, (d) same as
(c) but with a least-squares (LSQ) polynomial fit instead of the PF.
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(a) B-mode (b) SWV PF (c) SWV LSQ

Figure 4.11: ROIs and inclusion boundaries used for Phantom-1 are shown. Boundary
used for B-mode area estimation is shown in (a). Boundaries for area estimation and
ROIs used for calculating the various statistics on the SWV maps are shown in (b) and
(c).

(a) B-mode (b) SWV PF (c) SWV LSQ

Figure 4.12: ROIs and inclusion boundaries used for Phantom-2 are shown. Boundary
used for B-mode area estimation is shown in (a). Boundaries for area estimation and
ROIs used for calculating various statistics on the SWV maps are shown in (b) and (c).
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(a) SWV map of Phantom-1 using SSI

(b) SWV map of Phantom-2 using SSI
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(c) SWV map of Phantom-1 using
particle filter
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(d) SWV map of Phantom-2 using
particle filter

Figure 4.13: SWV maps obtained using the clinical software interface of the Supersonic
Imagine Aixplorer scanner using SSI are shown. Results from Phantom-1 and Phantom-
2 are shown in (a) and (b), respectively. Reconstructions using the particle filtering
algorithm are shown again on the same SWV scale for comparison in (c) and (d).
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Table 4.2: SNR, C and CNR particle filter

Regions Method Phantom-1 Phantom 2

SNR (dB)

e
PF 13.2± 1.2 13.2± 3
LS 12.4± 1.3 16.8± 2.7

t
PF 16.6± 2 18.4± 2.5
LS 19.8± 1.1 20.3± 1.2

b
PF 9.67± 1.6 6± 1.8
LS 20.6± 1.8 23.4± 1.7

C (dB)

e/t
PF 3.62± 0.56 3.83± 0.67
LS 4.1± 0.6 3.39± 0.49

t/b
PF 7.06± 0.82 7.15± 0.77
LS 4.56± 0.63 3.5± 0.53

e/b
PF 10.7± 0.7 11± 1
LS 8.66± 0.6 6.89± 0.85

CNR (dB)

e/t
PF 11.8± 2.8 12.8± 3.7
LS 13.1± 2.7 17.9± 4.2

t/b
PF 22.9± 3.6 19.7± 2.7
LS 27.5± 1.8 25.5± 1.9

e/b
PF 24.6± 1.8 23± 4.1
LS 22.6± 2.2 28.5± 5.1

Values of SNR, C and CNR obtained for various pairs of
regions in the two phantoms. All numbers are in dB. (e
= ellipsoidal inclusion, t = irregular tumor region, b =
background).

Results of EVE and B-mode scans of the two phantoms are shown in Figs. 4.9 and

4.10. Observe that in the SWV reconstruction the irregular tumor area can be distin-

guished from the stiff inclusion and the background material. For comparison, the SWV

image generated using a simple least-squares fourth order polynomial fitting method is

also shown. Although there is greater noise reduction and smoothing in the least-squares

fit, the boundary details of the inclusion and partially ablated region get smeared out.

For comparison, SWV maps obtained using the SSI technique are also shown in Fig. 4.13.

4.7 Piecewise Linear Fitting Results

A representative SWV map reconstructed using each of the two algorithms along with

a B-mode ultrasound image of the phantom is shown in Fig. 4.14. The two algorithms
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Table 4.3: Inclusion area estimates particle filter method

Method Phantom-1 Phantom-2
SWV PF 4.45± 0.15 4.13± 0.18
SWV LS 4.11± 0.19 4.01± 0.14
B-Mode 4.68± 0.14 4.47± 0.11

Estimates of area in cm2 of the el-
lipsoidal inclusion obtained from
the SWV maps and B-mode im-
ages are shown. Areas were esti-
mated by manually outlining the
inclusion and calculating the mean
and standard deviation of the areas
over 10 independent datasets.

perform equally well in terms of visual delineation of the outer inclusion boundary.

However, the reconstruction obtained using piecewise-linear regression appears blotchy

as compared to the particle filtered image. This is to be expected because the particle

filter has the freedom to choose slope values smoothly in a specified interval, whereas

the piecewise-linear regression algorithm is forced to approximate the fit with a few

straight lines with abrupt breakpoints.
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(c) Piecewise-linear filter

Figure 4.14: B-mode image of the phantom consisting of inclusion (i), partially ablated
region (p) and background (b) is shown in (a). SWV maps reconstructed using a (b)
particle filter algorithm and (c) piecewise-linear fitting algorithm are also shown.
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ROIs of size 10 mm × 5 mm are fixed in each of the three regions of the phantom

to obtain quantitative estimates of SWV and Young’s modulus. The locations of these

ROIs are shown overlaid on the B-mode image in Fig. 4.14(a). The means and standard

deviations averaged over the ROIs and averaged over ten independent data sets are

shown in Table 4.4. The mean SWV estimates obtained from the two methods differ

by less than 10% in all the three stiffness regions of the phantom. The mean Young’s

modulus estimates of the background are within 1 kPa of those obtained from the ELF

mechanical testing system, and 15 kPa for the inclusion.

Table 4.4: Comparison of SWV estimates particle filter vs. piecewise linear filter

ROI
SWV (m/s) E (kPa)

PF PL PF PL ELF

Inclusion 3.8± 2.2 3.4± 1.5 57.2± 70 42.2± 58 54.4± 0.1

Partially ablated 2.0± 0.2 2.0± 0.3 11.9± 2.6 12.1± 4.2 21.6± 0.3

Background 1.3± 0.2 1.4± 0.4 5± 1.9 6.5± 6.1 4.8± 0.5

Values of SWV and Young’s modulus of different regions in the two phan-
toms obtained from particle filtering (PF) and piecewise-linear filtering
(PL). Stiffness values obtained from mechanical testing (ELF) are also indi-
cated.

Certain limitations arise from the simplified shear wave propagation model. Viscosity

and frequency dispersion can cause the wave pulse shape to change. Both SWV maps

show low velocity artifacts around the needle inside the ellipsoidal inclusion. This is

probably because the wave pulse takes a certain finite time duration to attain its peak

velocity after the needle is vibrated. High velocity artifacts are seen above and below

the inclusion because of the assumption that the shear wavefront travels purely in the

lateral direction. Also observe in Table 4.4 that the variance of the velocity and Young’s

modulus estimates are quite high in the stiff region of the phantom. This is because

the ATP corresponding to the stiffer region has a smaller slope value that is difficult to

estimate accurately [70, Eq. (21)].
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Figure 4.15: Results from shear wave tracking using the MAPSlope algorithm. (a) Ul-
trasound B-mode image of the phantom, (b) slowness map generated by applying the
MAPSlope algorithm to denoise the arrival time data and obtain MAP slope estimates.
Wave velocities are shown in (c) by calculating the reciprocal of the slowness values.
The velocity values estimated using a 2nd order LOWESS filter with a 15 sample sliding
window is are shown in (d).
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4.8 MAPSlope-FastTrellis Results

Results of the complete procedure are shown alongside a B-mode ultrasound image

in Fig. 4.15. Note that the three regions of different stiffnesses are visible in the B-mode

scan in Fig. 4.15(a); this is done on purpose by altering the acoustic echogenicity of the

TM material used. As mentioned previously, these stiffness variations are not easily vis-

ible in B-mode scans of real tissue. The slowness map of a shear wave pulse tracked in

the same imaging plane is shown in Fig. 4.15(b). There is good correlation between the

boundary of the stiff ellipsoidal region The small irregular area on the left of the ellipsoid

which has an intermediate stiffness is also visible in the slowness map. Similar visual-

ization is possible through the shear wave velocity map in Fig. 4.15(c). Additionally, a

LOWESS [72] filtered image is shown in Fig. 4.15(d). It uses a local quadratic model with

a sliding window of 15 samples. This kind of “least-squares smoothed” slope estimation

is common in shear wave imaging literature [7]. It can be seen that the boundary details

are sharper when the MAPSlope algorithm is used.

Numerical results obtained with three regions of interest (ROI), each of size 1 cm × 2

cm, fixed in the slowness and shear wave velocity maps are shown in Table 4.5. Standard

image quality assessment metrics from the ultrasound elastography literature are used

for this study [96]; Table 4.6 shows these evaluation metrics. For each region, the signal

to noise ratio (SNR) is defined as:

SNR =
µ

σ

where µ and σ respectively denote the mean and the standard deviation values calcu-

lated over the ROI. The contrast (C) between a pair of regions is defined as:

C =
µ1

µ2
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Table 4.5: Slowness and stiffness estimates MAPSlope-FastTrellis algorithm

Stiff Intermediate Soft

Slowness (s/m) 0.356± 0.1 0.537± 0.11 0.859± 0.18

Velocity (m/s) 3.09± 0.9 2.03± 0.35 1.21± 0.29

SNR (velocity) 12.6± 3.7 17.6± 3.4 12.7± 1.9

E (kPa) 30.4± 22 11.5± 3.8 4.86± 2.9

Values of shear wave slowness, shear wave velocity and
Young’s modulus for the three different regions in the ex-
perimental phantom obtained from the MAPSlope algo-
rithm are indicated.

where the subscripts indicate the two different ROIs. Similarly, the contrast to noise ratio

(CNR) is defined as [138]:

CNR =
2(µ1 − µ2)

2

σ2
1 + σ2

2

.

Observe from Table 4.5 that the SNR values calculated from the shear wave velocity

maps are around 10 dB in all three regions of the phantom, which is quite high given

the noise levels of raw ultrasound echo data. It is worth noting in Table 4.6 that the best

contrast and contrast-to-noise ratios are obtained for the pair of regions that differ the

most in shear stiffness.

4.9 Discussion

Observe from Fig. 4.9 that the particle filtering method applies an optimal amount of

smoothing to the raw TTP data and produces good boundary delineation even between

the inclusion and the irregular tumor regions that do not differ greatly in their shear

modulus values. There is always a risk of over or undersmoothing when using ad hoc

function fitting algorithms (like least-squares) that may blur boundary details. Quantita-

tive estimates of SWVs and Young’s moduli obtained using the particle filter agree well

with the ground truth obtained from mechanical testing and least squares filtering.
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Table 4.6: Image quality metrics MAPSlope-FastTrellis algorithm

Stiff/Inter. Inter./Soft Stiff/Soft

C 3.6± 0.77 4.57± 0.72 8.17± 0.45

CNR 10.3± 6.4 18.1± 4 21.1± 6.6

Contrast (C), signal-to-noise ratios (SNR)
and contrast-to-noise ratios (CNR) (in dB)
obtained from shear wave velocity estimates
for three pairs of regions are shown. See text
for definitions of these quantities. The stan-
dard deviations are calculated from the dB
values obtained over each ROI from individ-
ual datasets.

The SNR, C and CNR values indicate that the particle filter is within a few dB of the

least-squares technique in suppressing noise, while providing better visual delineation

between stiffer and softer areas in the phantom. The particle filtered SWV maps have

quite high SNR and CNR values of at least 30 dB and 40 dB respectively. These test

metrics do not account for any measurement bias that may be present in the raw TTP

data and are used only to compare the performance of the two filtering methods.

Finally, inclusion area estimates obtained from the particle filtered SWV maps are

quite close to those obtained from B-mode imaging. As seen from Table 4.3, the least-

squares method underestimates the inclusion size which may be a side effect of over-

smoothing. It is worth noting that the contrast between the three different regions of

the phantom easily visible in B-mode is because of intentionally increased backscatter

contrast in these manufactured phantom materials. In real tissue, differentiating stiffer

and softer areas using B-mode scans is often challenging due to mixed echogenic con-

trast [139]. Area estimates may be susceptible to user variability because of the manual

outlining step. Therefore, these measurements should not be used as the primary metric

for comparing the performance of these SWV image reconstruction algorithms.

Young’s modulus estimates of the stiffer areas in Phantom-1 that are obtained from

mechanical testing do not agree with the results from ultrasound elastography estimates
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obtained from EVE and SSI. There is much better agreement of modulus estimates for the

data obtained from Phantom-2. This may be because Phantom-1 is over a year old and

there is a possibility of gradual degradation of the stiffness of phantom materials over

time [140]. Cylindrical samples that used in mechanical testing are stored separately and

hence are not under identical physical conditions as the material in the actual phantom.

Moreover, the numbers obtained from elastography may have an inherent bias because

the raw data undergoes multiple smoothing and filtering operations before obtaining

these modulus estimates.

SWV maps obtained using the Supersonic Imagine scanner are shown in Fig. 4.13.

It is apparent from these images that EVE has the ability of generating SWV maps at

greater depths and larger fields of view. Due to imaging depth limitations, inclusion

area estimates could not be obtained using SSI. The proprietary velocity reconstruction

algorithm appears to use a greater degree of smoothing. SWV estimates appear lower

than those obtained with the particle filter. Nevertheless, the SSI technique differentiates

various regions in the phantoms quite well, especially in case of Phantom-1 as seen in

Fig. 4.13(a).

The ability of EVE technique to resolve fine boundary details is limited by the shear

wave pulse width used. The data shown here was generated using a 30 ms wide shear

wave pulse. Although it may be possible to obtain sharper delineation by using a nar-

rower pulse, it was observed during experimentation that due to certain physical lim-

itations of the actuator system, accurate amplitude control could not be obtained for

shorter vibration durations. The effect of the width of the pulse on estimation of TTP

values and subsequent effect on the resolution of the SWV images will be analyzed in

the future.
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The data processing algorithms used throughout this work assume that there is pure

lateral propagation of the wave throughout the phantom. This assumption fails to hold

for regions above and below the inclusion because the needle is bonded only to the inte-

rior of the inclusion [141]. As a result, SWV artifacts can be seen in the regions that are

shallower or deeper than than the stiffer ellipsoid. In order to focus attention on the data

obtained from the regions that are laterally adjacent to area where the needle is bound

to the phantom material, the SWV maps in Fig. 4.9 and Fig. 4.10 are shown beginning

at a depth of about 1 cm. The wave propagation phenomenon above and below the stiff

ellipsoid is more complex than pure transverse wave motion and a separate study to

analyze this aspect may be necessary.

The data acquisition system is capable of operating at a frame rate of about 2 kHz

which provides sufficient time sampling to track the shear wave pulse. As a practical

matter, the particle filter runs slower than least-squares polynomial fitting. However,

the algorithm is parallelizable because data at each depth is filtered independently. The

current test implementation takes a few minutes to process the images shown in Figs.

4.9 and 4.10. It is quite common to see a speedup by an order of magnitude when

implemented as compiled code, providing almost real-time monitoring capability.
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5

Three Dimensional Reconstruction with Sheaf Acquisitions

He that goeth forth and weepeth,

bearing precious seed, shall doubtless

come again with rejoicing, bringing

his sheaves with him.

Psalm 126:6

5.1 Introduction

In this chapter, two dimensional (2D) electrode vibration elastography (EVE) is ex-

tended to three dimensions (3D) by utilizing radiofrequency (RF) echo signals acquired

over a “sheaf” of imaging planes. A sheaf is defined as a collection of planes that in-

tersect along a common axis. The 3D reconstruction algorithm is termed “Sheaf Of

Ultrasound Planes Reconstruction” or SOUPR. This cylindrically symmetric method of

acquisition is naturally suited to electrode vibration elastography where shear wave-

fronts travel outward from a vibrating needle which acts as a line source of shear waves

[6]. Moreover, the overall shape of the ablation is approximately cylindrically symmetric

with the ablation needle coinciding with the axis of symmetry.
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RF electrode/needle

C-planes
at different
depths

Subset of 4 imaging
planes in a sheaf

Soft background
(healthy tissue)

Hard inclusion
(ablated tumor)

Irregularly shaped
intermediate stiffness
region

Figure 5.1: A subset of a sheaf of imaging planes containing four equiangular planes
passing through a line that coincides with the ablation needle is shown. A stack of C-
planes over which the shear wave velocities are interpolated is also shown. The needle
is vibrated vertically to set up a shear wave pulse that travels outwards and away from
the needle in a cylindrically symmetrical fashion.

Ideally, a full 3D reconstruction algorithm must induce and track shear wave dis-

placements in 3D by acquiring full volume RF ultrasound echo data. However this

requires the use of matrix array transducers [142, 12] which are more expensive than

traditional 1D linear and phased array probes and may not provide high frame rates to

track shear waves. Sheaf acquisition can be used to bypass these limitations by generat-

ing SWV image slices using data from linear or phased array transducers and assembling

them into a 3D visualization.

This chapter presents details of the data acquisition setup used for experimental val-

idation of SOUPR. In order to reconstruct a 3D shear wave velocity (SWV) reconstruc-

tions, data is acquired over a subset of a sheaf of planes. This subset can be chosen in

such a way that the planes are equispaced in angle. For example, a sheaf of four imaging

planes is shown in Fig. 5.1. SOUPR can also handle scattered data points from irregu-

larly spaced imaging planes. The transducer is manually adjusted to image specific
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angular locations in the sheaf. Guide markers on the tissue-mimicking (TM) phantom

container walls are used to align the angle of the imaging plane. The effect of the num-

ber of imaging planes on reconstruction quality is studied using standard image quality

metrics. This method relies on misregistration errors being small enough to be con-

sidered as part of the additive measurement noise. In general, the method may fail if

there is significant relative translation or rotation between two volumes. If greater accu-

racy in transducer placement is desired, feedback control systems like one described by

Abolmaesumi et al. [143] may be employed. Such systems are beyond the scope of this

work.

5.2 Reconstruction Algorithm

The 3D reconstruction algorithm SOUPR consists of four distinct data processing

steps, starting with the acquisition of beamformed RF ultrasound echo data, finally lead-

ing to the 3D stack of C-planes of SWV estimates:

1. Displacement estimation from beamformed echo data over each imaging plane.

2. Wavefront localization to obtain time to peak (TTP) [54] displacement at different

locations in the imaging plane.

3. SWV estimation from TTP plots to obtain SWV maps over each imaging plane.

4. Smooth function approximation on a grid over each C-plane.

As seen in Fig. 5.1, each C-plane is perpendicular to all the imaging planes. The SOUPR

algorithm presented here effectively breaks down a 3D reconstruction problem into a

sequence of decoupled 2D function approximation problems. Each C-plane is processed

separately and the final 3D reconstruction is generated by stacking them together.
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5.2.1 Displacement Estimation

Ultrasound echo data is acquired over each imaging plane as described previously

in Section 3.3.1. The sequential tracking acquisition enables axial strips to be assem-

bled into individual frames to obtain high frame rates for tracking shear waves. These

frames provide snapshots of the underlying medium at different time instants. Frame-

to-frame displacements are estimated using a standard 1D cross-correlation algorithm

[144]. An axial displacement estimation routine is used with a window length of 2 mm

and 75% overlap. This procedure is repeated over the entire imaging plane to obtain a

displacement vs. time profile at each pixel [145].

5.2.2 Wavefront Localization

The high frame rate displacement data is used to localize the shear wave pulse. It is

assumed that the wave travels purely laterally away from the needle. The time of arrival

of the wave at different locations away from the needle is recorded by finding the time

of peak displacement [54, 53]. A frequency domain filter discards any frequency compo-

nents that are smaller than 10% of the largest component of the frequency spectrum of

the displacement vs. time profiles. This filters out any “high frequency” noise compo-

nents in the displacement-time profiles making it easier to locate the peak. A quadratic

fit with a 5-point window is used around the peak to get sub-frame-number resolution

for the location of the peak.

5.2.3 Imaging Plane Reconstruction

The piecewise linear fitting algorithm described in Section 4.2 is used to reconstruct

the shear wave velocity images on each imaging plane. The image plane containing the
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partially ablated region is also imaged using a commercial Supersonic Imagine (Aix-en-

Provence, France) scanner using the ShearWaveTM Elastography mode. SWV estimates

are obtained using ROIs placed in the three different regions of the phantom.

SWV estimates on each C-plane are obtained from a second function approximation

routine. Fig. 5.1 also illustrates a set of C-planes over which the SWV values are inter-

polated. The goal is to provide smooth reconstructions of SWV values using a fine grid

on every C-plane.

Depending on the number of planes imaged in the sheaf, SWV estimates are available

along many concurrent radial lines passing through the needle axis on each C-plane.

(However, it is worth noting that this step of the SOUPR algorithm is quite general and

can be applied even if data is not acquired in a sheaf pattern.) For convenience, let x

denote a vector of the unknown values of SWVs on the user defined C-plane grid and let

b denote the vectorized version of the known SWV values (data) along radial lines on the

same C-plane. In general, the known data points do not coincide with grid points. Since

this is now a 2D smoothing problem on a particular C-plane, a local bilinear interpolation

scheme is used. Each known function value is expressed as a linear combination of the

four neighboring grid points. The weighting coefficients for the grid neighbors of each

data point are represented using rows of a matrix A. The number of rows in A is equal to

the length of b and the number of columns is equal to the length of x. So, the unknown

function values on the grid can be computed by solving the system of linear equations

Ax = b.

5.2.4 Regularized C-plane Reconstruction

Note that the number of unknowns (grid locations) in the problem can be much

larger than the number of points at which the stiffness estimates are actually known. So
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A may not be full rank (it has fewer rows than columns) which makes the system of

linear equations ill-posed. This ill-posedness is circumvented by adding an extra term

which penalizes a large value of the derivative at any point in the reconstruction. Since

differentiation in the case of discrete data is simply a finite difference operation, it can be

compactly represented using another (square) matrix B. Second order central differences

(Laplacian) are used here to penalize the second derivative of the underlying function.

The derivative at each grid node can be expressed as a linear combination of its four

neighboring grid nodes. The following least-squares optimization problem can be used

to solve for the unknown values on the grid:

arg minx ||Ax− b||2 + η||Bx||2 [5.1]

where η > 0 is a regularization parameter that controls the amount of smoothing. The

closed form solution

x = (ATA + ηBTB)−1ATb [5.2]

can be obtained by setting the derivative of the objective function in (5.1) with respect to

x to zero and solving for x (see Section C.3).

The aforementioned problem setup is closely related to the idea of “Tikhonov regular-

ization” for ill-posed problems [146, Ch. 8]. Explicit computation of the matrix inverse in

(5.2) should be avoided in practice. For the present setup, each row of A and B contains

at most four and five non-zero entries respectively, and the matrix in the parentheses

in (5.2) is sparse, symmetric and block diagonal which can be efficiently inverted using

sparse factorization algorithms [113]. This also bypasses any computational issues with

large matrix dimensions thereby allowing use of fine reconstruction grids.
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(a) Under-smoothing (b) Over-smoothing (c) Correct smoothing

Figure 5.2: This figure shows the effect of using different values of the smoothing pa-
rameter η in the fitting procedure applied to simulated noisy data. When η is too small,
the resulting fit follows the noise as seen in (a), whereas if η is too big it causes over-
smoothing as seen in (b). The correct smoothing parameter value strikes an “optimal”
balance as seen in (c). This value is chosen to minimize the OCV score plotted in Fig. 5.3.

5.2.5 Smoothing Parameter Selection

If the smoothing parameter η is chosen arbitrarily, larger values will force the final fit

to be closer to the null space of the penalty function which induces smoothness, whereas

small values will result in a more undulating fit. However an objective method for

selecting this parameter is necessary for studying reconstruction quality using summary

statistics like the mean and standard deviation calculated from regions of interest in the

reconstructed image. For this study, an automatic method called leave-one-out ordinary

cross-validation (OCV) is used to circumvent any user induced variability from different

values of η. In this method, the fitting routine is repeatedly run by excluding one data

point at a time and calculating the OCV score function given by:

OCV(η) =
1

M

M

∑
k=1

(b̂k − bk)
2

where M denotes the number of data points, bk denotes the known data value at a

skipped data point location k, and b̂k denotes the value predicted by the optimization
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procedure when all but the kth data point are used to solve (5.1). A grid search is then

used to arrive at the choice of η that minimizes this score function. The smoothing pa-

rameter chosen in this manner also has a desirable statistical property of minimizing

the cross-validation score which is an unbiased estimator of the mean squared error

risk [147, Sec 5.3]. Example C-plane reconstructions with three different values of η are

shown in Fig. 5.2. These plots were generated using a test function of two dimensions:

f (x, y) = 1 when x2 + y2 ≤ 1 (unit circle centered at the origin), and zero otherwise,

with the domain −2 ≤ x, y ≤ 2. Gaussian noise was added to this function to simulate

measurement errors in the shear wave velocity and registration errors due to misalign-

ment of the image plane angle. The function values were then imputed on a grid using

(5.2). The “correct” value of η for this case was found by minimizing OCV(η) shown

in Fig. 5.3. In the interest of processing time, η was estimated only once per dataset

using the C-plane at half the maximum depth. It can be re-estimated for every C-plane

if desired.

Intuitively, the problem of choosing the sampling resolution for each imaging plane

and number of planes in the sheaf depends on the “roughness” or frequency content of

the true underlying signal to be reconstructed. From a signal-theoretic perspective, this

can be formalized into a sampling theorem described in Section C.4. In order to better

understand the effect of noise and varying number of image planes on the reconstruction

quality of the SOUPR algorithm, a Monte Carlo simulation experiment was performed

using a single C-plane. Using the same test function as above, synthetic data is generated

with 4, 6, 12 and 16 concurrent radial lines with 80 equidistant samples along each

line. Gaussian noise for different signal to noise ratios (SNR) was added to simulate

measurement errors. Since the maximum test function value is 1, SNR is defined as

20 log10(1/s) where s is the standard deviation of simulated Gaussian noise. This noisy
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data was processed with the SOUPR algorithm to reconstruct C-plane function values

f̂ (x, y) on a 100× 100 grid in the domain −2 ≤ x, y ≤ 2. Reconstruction mean squared

error was calculated using 1
104

100

∑
i=1

100

∑
j=1

∣∣∣ f
(

4i−202
99 ,

4j−202
99

)
− f̂

(
4i−202

99 ,
4j−202

99

)∣∣∣
2
, where the

scaling and shifts ensure that the functions f and f̂ are evaluated in the domain −2 ≤
x, y ≤ 2. This simulation was repeated 10,000 times. Results are shown in Section 5.3.1.

Figure 5.3: OCV plot vs log(η). The minimizer in this case is approximately η = e−3.

5.2.6 Data Analysis

The quality of 3D reconstructions was gauged by calculating the contrast (C) and

contrast-to-noise ratio (CNR) for pairs of regions in the TM phantom. In conventional

2D elastography, these statistics are calculated over carefully chosen regions of interest

(ROI). For the 3D case, the same idea is extended here by choosing parallelepiped shaped

ROIs, with lateral and elevation dimensions of 5mm each and 10mm axially. These

statistics are presented in decibel units using the following formulas [144, 138]:

C = 20 log10

(
µ1

µ2

)
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and

CNR = 20 log10

(
2(µ1 − µ2)

2

σ2
1 + σ2

2

)
.

where µ and σ respectively denote the mean and the standard deviation values of the

SWVs calculated over each ROI and the subscripts indicate two distinct media. The mean

and standard deviations over 5 independent datasets were obtained after converting to

dB.

Figure 5.4: Mean squared reconstruction error (MSE) from simulated data at different
noise levels and varying number of image planes. The reconstruction error is largest
when only 4 image planes are used. No significant improvement is obtained by increas-
ing the number of planes from 6 to 16, as seen from the overlapping errorbars around
the MSE values.
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Table 5.1: Shear wave velocity estimates SOUPR reconstruction

# imaging planes background partially ablated inclusion

4 0.76± 0.07 1.01± 0.02 1.33± 0.10

6 0.75± 0.04 1.02± 0.02 1.34± 0.14

12 0.76± 0.06 0.99± 0.03 1.34± 0.10

16 0.76± 0.07 0.98± 0.03 1.33± 0.10

SSI 0.9± 0.07 1.1± 0.05 1.2± 0.03

Values of SWV (in m/s) for the three regions of interest are
shown. The number of imaging planes used for 3D reconstruc-
tion is varied from 4 to 16. The mean and standard deviations
were calculated over 3D parallelepiped shaped ROIs. For com-
parison, measurements from the commercial Supersonic Imag-
ine (SSI) ShearWaveTM Elastography imaging mode are also
shown. Note that the SSI measurements were obtained using
conventional 2D ROIs from only a single imaging plane with
the partially ablated region in view (cf. Fig. 5.9).

(a) (b) (c) (d)

Figure 5.5: Ultrasound B-mode image and respective shear wave velocity (SWV) images
are shown. Note the clear visualization of the partially ablated region seen on B-mode
in (a) and in the shear wave image obtained using the piecewise linear fitting algorithm
in (b). B-mode (c) and SWV reconstruction (d) for an image plane not including the
partially ablated region are also shown for comparison. Backscattered intensity was
varied in the phantom to visualize normal, ablated and partially ablated areas in the
B-mode reference images.
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(a) 4 imaging planes (b) 6 imaging planes (c) 12 imaging planes (d) 16 imaging planes

Figure 5.6: Example C-plane reconstructions of shear wave velocity at an axial depth of
2.8cm with different number of imaging planes. Observe that as more planes of data are
introduced, the variability and finer detail in the boundary increases, and the “wheel
spoke” artifact becomes less pronounced.

(a) Contrast (b) CNR

Figure 5.7: Plots of (a) Contrast and (b) CNR as a function of the number of
imaging planes. Contrast and CNR plots are for three different pairs of regions.
(BKG=background, PAR=partially ablated, INC=inclusion)

5.3 Results

5.3.1 Simulations

Results of Monte Carlo simulations are shown in Fig. 5.4. Note that the reconstruction

error decreases with increasing SNR, irrespective of the number of image planes used.
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In all cases the reconstruction error was largest when 4 image planes are used. On

average, the 16 plane case gives the best reconstruction accuracy, but the error bars

overlap considerably when the number of planes is 6, 12 or 16. This suggests that for the

ideal case of a perfectly radially symmetric inclusion, increasing the number of image

planes beyond 6 does not lead to any significant improvement in reconstruction quality.

A more realistic scenario involves inclusions that are not perfectly ellipsoidal in shape.

This is presented using TM phantom data where the phantom has an irregularly shaped

region on one side.

5.3.2 Phantom Data

The reconstructed SWV maps for two of the imaging planes over which RF ultra-

sound data loops were acquired are shown in Fig. 5.5. SWV reconstructions were per-

formed by applying piecewise linear fitting to the raw TTP data as illustrated in Fig. 4.1.

The first image plane passes through the partially ablated region which can be visual-

ized in both the B-mode and the SWV reconstruction while the second plane is aligned

such that the partially ablated region is not seen. Note that these regions of varying

stiffness are not as easily visible in real tissue using a B-mode scan. But they can be eas-

ily seen here because the TM phantom material was designed to have different acoustic

echogenicities for different regions. C-plane slices using different numbers of angular

planes between 4 and 16 are shown in Fig. 5.6. The partially ablated region can be seen

on the right side of the inclusion in all the four C-planes.

The estimated SWVs shown in Table 5.1 do not change significantly as the number

of planes in the sheaf was changed. This is because the structure of the phantom is

quite symmetrical, so on average the measured SWVs do not vary when new planes

of data are added. The regularized function estimation framework described here is
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also related to classical statistical learning theory: the choice of η is related to the so

called bias-variance tradeoff [148, Ch. 2, Sec. 2.2.2]. A small value of η will produce

an undulating fit, i.e., an estimator with low bias but high variance. On the other hand,

larger value of η will reduce the variance and increase the bias. The use of Akaike

information criterion in the piecewise linear fitting algorithm and regularization in the

optimization problem are both ways to trade off some variance at the cost of introducing

a bias in the estimated function. As a result of the smoothing, the SWV estimates shown

in Table 5.1 are lower than the true values for the phantom calculated using the known

material stiffness (Young’s modulus). But they agree quite well with the SWV estimates

obtained using SSI shown in the last row of the table. Moreover, delineation of ablated

and partially ablated regions, which is of paramount importance, can be easily seen in

the C-plane images.

There are several tradeoffs associated with increasing the number of imaging planes

for 3D reconstruction. Additional planes would require significantly more data acqui-

sition and processing to obtain SWV reconstructions. A quantitative evaluation of im-

provements obtained by increasing the number of imaging planes is therefore necessary

to determine a reasonable number of planes needed for fast imaging. Image quality met-

rics calculated over 5 independent datasets are shown in Fig. 5.7. The largest contrast

of about 5 dB in Fig. 5.7(a) is obtained when comparing the soft background with the

hard inclusion, also imaged with 6 imaging planes. A highest CNR of 1.5 dB is obtained

using 6 imaging planes in the sheaf as illustrated in Fig. 5.7(b). As one would expect, the

highest contrast values were seen between the inclusion-background regions. In general,

there is a decreasing trend in all image quality statistics as the number of planes was

increased.
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(a) 3D render (b) slice view

Figure 5.8: (a) 3D reconstructed volume of the inclusion using 6 imaging planes obtained
by thresholding. (b) Three slice view of the 3D volume with SWV shown in m/s. (The
irregularly shaped region is not visible in the planes shown here.)

The full 3D reconstruction using 6 imaging planes is shown in Fig. 5.8. This is created

by stacking together the individual C-planes. This 3D render should be interpreted with

caution because only an apparent estimate of the shear wave velocities is obtained. It

should not be misconstrued as a solution of a full 3D shear wave propagation inverse

problem. Fig. 5.8(a) is obtained by thresholding and is for visualization only. Numerical

information is shown in the three-slice view in Fig. 5.8(b).

5.4 Discussion

This chapter presented a novel technique for acquiring, processing and displaying a

3D rendering of the SWV distributions for ultrasound shear wave elastography using

a stack of C-plane reconstructions. The C-plane visualizations of the ablation slices

can also be utilized to clearly delineate ablation boundaries. The sheaf of ultrasound
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planes reconstruction (SOUPR) algorithm is presented and validated using TM phantom

experiments for EVE.

A piecewise linear fit was used to accentuate change points with the goal of improv-

ing boundary delineation in the reconstructed SWV maps on individual scan planes.

Other noise filtering methods such as least squares linear or polynomial fitting [65],

Kalman filtering [149] or and other Bayesian model based filtering methods (Sections

4.4 and 4.5) can also be used. The idea of Tikhonov regularization for smooth function

approximation was previously applied to displacement estimation by Rivaz et al. [150].

In contrast, SOUPR uses regularized optimization to reconstruct smooth shear wave ve-

locity maps from undersampled grids. It is worth noting that the second order finite

differencing regularization term used in this work can be replaced with first or higher

order derivatives or any other types of penalty functions that promote smoothness. The

key requirement is the ability to express the penalty as a linear operation so that the

formulation in (5.1) can still be used.

The contrast stays almost constant as the number of planes in the sheaf was increased.

The CNR quality metric shows a decreasing trend as the number of planes is increased.

This may be a side effect of the smooth C-plane fitting algorithm. The fitting algorithm

approximates a smooth surface in regions where there are no data points. With fewer

number of planes there are larger regions with no data points, resulting in a visually

smoother fit which corresponds to better CNR in the image. On the other hand, when

the number of image planes is increased, the voids are much smaller. Therefore the

first term in the optimization problem (5.1) exerts greater influence forcing the surface

fit to appear more undulating. To enable fairer comparison between reconstructions

performed with different number of image planes, these quality metrics may have to be

modified by accounting for these effects.
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A visible side effect of the sheaf imaging strategy is the “wheel spoke” artifact seen in

Fig. 5.6, especially when using fewer planes in the sheaf. These appear as radial streaks

emanating from the center of the C-plane and coinciding with the radial locations of the

image planes over which ultrasound echo data was acquired. The smoothing parameter

can be manually tuned to get rid of such artifacts—a larger value of η will smooth out

such variations. In a commercial system, there may be regulatory hurdles to allowing

the user to control the value of η, but it may be possible to include an additional preset

akin to smoothing and edge enhancement which is available on almost all ultrasound

scanners.

In a real world ablation monitoring situation, it may be more challenging to align

the needle along the axial beam direction of the transducer. In situations where the

needle is at an angle to the axial ultrasound beam direction, 2D displacement tracking

algorithm can be used. The component of these displacements parallel to the needle can

be extracted and TTP values along lines perpendicular to the needle can be calculated

in steps 2 and 3 of Section 5.2, respectively. In case of physical constraints on placing

the transducer around the needle, it may be impossible to obtain the complete sheaf,

resulting in voids in the dataset. But a partial volume reconstruction can still be obtained

with a SOUPR-like algorithm, using only that part of the fine grid where data points are

present. The four step decomposition offers good flexibility for tuning the details of

each signal processing block for specific applications. For example, some commercial

ultrasound scanners already offer imaging modes to map shear wave velocities (either

as point estimates or over large regions) irrespective of the alignment of the image plane

with respect to the needle. In such systems, it will be convenient to incorporate one

additional block for step 4 at the end of the existing signal processing chain to generate

3D volume maps.
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It is also useful to compare the SWV image plane reconstruction with a “bronze

standard” image acquired from a commercial Supersonic Imagine ultrasound scanner

with shear wave imaging capability. Fig. 5.9 shows one image plane of the phantom

with a SWV overlay on B-mode. The image plane is identical to the one shown in

Figs. 5.5(a) and (b). Note that high velocity artifacts can be seen at depths greater than

2.5cm.

Figure 5.9: A “bronze standard” SWV image of the phantom inclusion corresponding
to the same imaging plane of Fig. 5.5(a). This image was acquired using a Supersonic
Imagine ultrasound scanner with the shear wave imaging mode. (Original image has
been cropped and rearranged to fit.)

The results presented here indicate that 6 planes in a sheaf are sufficient for fast re-

construction in the particular TM phantom used, both qualitatively and quantitatively.

This is because the shape of the inclusion was mostly symmetric about the needle, (ex-

cept for a small irregularly shaped partially ablated region). This was also confirmed

by the simulation experiment that was specifically used to mimic the situation in the

phantom experiment. Greater number of image planes may be needed if the inclusion

is more irregularly shaped. More complex geometries can be simulated ahead of time
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using the method described in Section 5.2.5 to decide on a suitable number of image

planes in the sheaf as part of pre-ablation clinical planning.

The location and number of angular planes can also be optimized with the aim of

minimizing the number of planes required for effective 3D reconstruction while maxi-

mizing the processing speed. This will also allow implementation of 3D reconstruction

algorithms on low end commercial ultrasound systems which may not be equipped with

sufficient processing power or modern graphical processing units (GPUs). Minimization

of the number of planes will enable faster data acquisition and processing for eventual

real-time implementation of 3D SWV volume reconstructions. Adaptive or non-uniform

sampling of complex regions, for example those including the simulated, partially ab-

lated regions as shown in Figs. 5.5–5.6 and regions near large vessels during in vivo

implementations, will have to be evaluated to determine if this can further improve de-

lineation. Data can be acquired in multiple passes where the interpolated visualization

from an earlier pass provides feedback for sampling critical locations in the volume,

enabling an adaptive sampling approach for improved delineation.

Although the sheaf pattern of acquisition is naturally suited to the geometry of the

EVE setup, an inherent limitation of this method is that every image plane must contain

the needle to enable time of arrival estimation. In a sheaf, data samples progressively

get sparser away from the needle. This shortcoming can be addressed by sampling extra

planes in the sheaf so that a certain fine sample spacing is achieved at a predetermined

distance away from the needle. Alternatively, if a specific ROI has already been located,

imaging planes that are not uniformly spaced in angle can be employed; finer spacing in

specific regions may provide better reconstruction quality at those locations. Knowledge

from earlier iterations of the reconstruction algorithm may also be incorporated in the

interpolation procedure, by reconstructing only parts of the full volume that are known
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to contain any interesting features, either automatically or with the intervention of a

clinician.
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6

Kernel Based Methods for 3D Reconstruction

Essentially, all models are wrong, but

some are useful.

G.E.P. Box, N.R. Draper, Empirical

Model Building and Response Surfaces

6.1 Introduction

Real time three dimensional visualization of percutaneous needle ablation procedures

has considerable clinical value. Traditionally, 1D linear or phased array transducers have

been used to reconstruct strain and/or shear stiffness to delineate the ablation boundary

in 2D imaging planes. However, ablation is fundamentally a 3D process and hence a 3D

imaging modality is desirable. Although matrix transducers can be used to obtain full

volume acquisitions, they provide lower frame rates and are more expensive than 1D

arrays.

A prototypical problem in data visualization is that of scattered data interpolation.

In shear wave elastography, stiffness measurements may be available only at a small

subset of points in the imaged volume. For instance, when using the sheaf of ultrasound

planes based reconstruction (SOUPR), data is only available on a few image planes in a
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spoke-wheel pattern. In case of 3D volumes acquired with a matrix array, data may be

only sparsely sampled in the entire volume in the interest of faster frame rates. In both

situations, it is necessary to reconstruct the complete shear wave velocity map over a fine

grid of points in a complete volume. This is a challenging problem because the problem

will typically be ill-posed due to the availability of few data points compared to the size

of the grid, i.e., more unknowns than known data points.

This chapter introduces a Matérn kernel based reconstruction method which pro-

vides an objective way of imposing “prior structure” on the final reconstruction. An

oversimplified model would assume that there is an abrupt variation in stiffness go-

ing from the ablated region to the surrounding unablated tissue. However, in reality,

previous work has shown that there is a transition region between the stiff and softer

background. Moreover, this transition may be very difficult to describe mathematically

because the process of ablation involves a complex interplay between a model for trans-

fer of heat into tissue and a model of cell necrosis as a function of temperature and time.

The Matérn model provides an adaptive method for learning the degree of smoothness

of the final reconstruction from underlying data. The use of Matérn kernel with carefully

selected parameters allows fast reconstruction from undersampled noisy data volumes

while maintaining stiffness boundary details.

This chapter also analyzes some theoretical properties of the proposed algorithm in

the context of reproducing kernel Hilbert spaces. It can be shown that the smoothing

algorithm produces optimal reconstructions in a predictive mean squared error sense.

This is corroborated using simulation and tissue-mimicking (TM) phantom-based exper-

imental results which show that this method in fact reduces spoke wheel artifacts seen

in SOUPR.
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6.2 Reproducing Kernel Hilbert Space (RKHS) Formalism

Restricting attention to individual transverse planes, the SWV field can be repre-

sented by a function f : R
2 → [0, ∞). With a slight abuse of notation, t is used in

this chapter for locations of SWV measurements in the imaged volume. Noisy point

evaluations of this function are acquired at different locations {ti}n
i=1.

ui = f (ti) + ǫi

where each ti ∈ R
2 is situated along radial lines and ǫi is assumed to be i.i.d. Gaussian

distributed noise with unknown variance. A reconstruction of f (via interpolation or

approximation) on a fine grid of M points is desired. As it stands, the problem is ill-

posed because the number of data points n is usually much smaller than the size of the

reconstruction grid (n ≪ M). Typically, the number of data points obtained on each

plane is on the order of 103, whereas the grid may consist of 104 − 105 points. It is

necessary to restrict the space of functions that the reconstruction algorithm operates on

in order to guarantee good theoretical properties [151]:

Definition 6.1 (Reproducing Kernel Hilbert Space) A reproducing kernel Hilbert space

H of functions f on R
2 is defined as the Hilbert space of functions over which the point

evaluation functional is a bounded linear functional, i.e., for every t ∈ R
2 there exists

Mt < ∞ such that | f (t)| ≤ Mt|| f ||H for all f and || · ||H denotes the RKHS norm.

In the most general setting, the function f is assumed to be a member of an RKHS

HR with the reproducing kernel R. So the optimization problem of interest is [152]:

minimize
n

∑
i=1

(ui − f (ti))
2 + λ|| f ||2HR

. [6.1]
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Here f ∈ HR and || · ||HR
denotes the RKHS norm. Another interpretation is to consider

this as a regularized solution to an ill-posed inverse problem also called the Fredholm

equation of the first kind, with the point evaluation function playing the role of the

“blurring function” [153] in this case. The following theorem characterizes the existence

of a solution to this optimization problem:

Theorem 6.2 (Representer Theorem) The solution of (6.1) can be expressed in the form:

fλ(t) =
n

∑
i=1

ciR(t, ti).

A short proof is presented in C.5. In fact, the values of ci can be evaluated in closed

form [154, 146]. This theorem has important practical ramifications because it reduces

the problem of finding f in an infinite dimensional Hilbert space to a problem of finding

coefficients ci which is a finite dimensional problem. The smoothing parameter λ is

chosen through generalized cross-validation (GCV) [146].

6.3 Matérn Model

The choice of kernel is paramount because it dictates the smoothness properties of

the final fit. The Matérn radial basis function (RBF) can be used as a more general kernel

function compared to the Gaussian RBFs. As it will be seen, the Matérn RBF reduces to

a Gaussian RBF for certain choice of parameters. The Matérn RBF is defined as [155, ch.

2, sec. 2.7], [156]:

R(||t− ti||) =

√
π

2ν−1Γ(ν + 1/2)r−2ν

( ||t− ti||
r

)ν

Kν

( ||t− ti||
r

)
[6.2]
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with ν, r > 0 and Kν is the modified Bessel function of the second kind. The unknown

function can be approximated as:

f̂ (t) =
n

∑
i=1

ciR(||t− ti||).

Intuitively, this formulation suggests that each data point ti imposes a “region of in-

fluence” that varies with its distance from an arbitrary point t. Note that the absolute

locations of the points t and ti are immaterial, only the distance ||t − ti|| plays a role

in the evaluation of the kernel. The characteristics of this region of influence depend

on the shape of R, which is controlled using two parameters ν and r. The smoothness

(differentiability) is controlled using ν whereas the range of influence is controlled by

r. It is customary to call ν the smoothness parameter whereas r is called the range (or

scale) parameter of the Matérn covariance function. In particular, as ν → ∞ the Matérn

Kernel converges to an infinitely differentiable Gaussian kernel function. The advantage

of using the Matérn kernel is that it provides sharper roll-offs than the infinitely dif-

ferentiable Gaussian function, and imparting the ability preserve boundary details. A

common choice is to set ν = m + 1
2 for different non-negative integers m, resulting in a

simple closed form expression for R(·) [155].

It can be shown that linear combinations of the Matérn kernel function produce

functions whose frequency response decays like a reciprocal polynomial [157], where

the rate of decay is related to the ν parameter. This is known as a Sobolev space formally

defined as follows [158, Ch. 8]:

Definition 6.3 (Sobolev Space of functions on R
2) The Sobolev space Wα

s,2(R
2) is de-

fined as the space of square integrable functions f on R
2 that satisfy

∫

R2
(α2 + ω2

1 + ω2
2)

s|(F f )(ω1, ω2)|2 dω1 dω2 < ∞. [6.3]
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Input: {ti}n
i=1: data point locations in R

2

{ui}n
i=1: corresponding noisy data points

S1: finite set of smoothness values
S2: finite set of scale (range) values

Output: f ∗(·): smooth function fit to the noisy data
R∗: Matérn kernel for the space that f ∗ belongs to
λ∗: smoothing parameter chosen using GCV

1: procedure MatérnSmooth({ti}n
i=1, {ui}n

i=1,S1,S2)
2: V∗ ← ∞

3: for each (ν, r) ∈ S1 × S2 do
4: λGCV ← smoothing parameter chosen using GCV
5: V ← GCV score at λGCV

6: [Σ]ij ← R(ν,r)(||ti − tj||)
7: c← (Σ + λGCVI)−1[u1u2 · · · un]T

8: if V ≤ V∗ then
9: V∗ ← V

10: f ∗(·)← ∑
n
i=1 ciR(ν,r)(|| · −ti||)

11: R∗ ← R(ν,r)
12: λ∗ ← λGCV

13: end if
14: end for
15: return ( f , R∗, λ∗)
16: end procedure

Figure 6.1: Matérn kernel based reconstruction algorithm.

where

(F f )(ω1, ω2) =
∫

R2
f (x1, x2)e

−j(ω1x1+ω2x2) dx1 dx2

denotes the 2D Fourier transform of f .

Furthermore, it can be shown that Wα
s,2 is a RKHS with the Matérn function as its

reproducing kernel and hence the RKHS norm can be defined using the integral in (6.3).

Theorem 6.4 Let R(·) be as defined in (6.2). Then
Γ(ν+ 1

2 )

4π3/2Γ(ν+1)
R(·) is the reproducing

kernel forW1/r
(ν+1),2

(R2).
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The proof involves some algebra to calculate the inverse 2D Fourier transform of (1/r2 +

ω2
1 + ω2

2)
−ν−1 as shown in C.6. Note that different authors set the leading normalization

constants in different ways. For simulations and data analysis, the leading constant C

was chosen in such a way that C(d/r)νKν(d/r) is normalized to 1 when d = 0 for fixed

(ν, r). This is made possible by the fact that Kν(u) behaves like 2ν−1Γ(ν)u−ν as u ↓ 0.

[159, Sec. 9.6.9, pp. 375].

The optimization problem (6.1) can now be solved over different spaces HR(ν,r) by

choice of kernel parameters (ν, r). This is main idea behind the MatérnSmooth algo-

rithm presented in Fig. 6.1. For a fixed pair of kernel parameters, choosing the smoothing

parameter λ through GCV has the following desirable theoretical property:

Theorem 6.5 (GCV Theorem) Let fλ be the solution of the optimization problem in (6.1)

and define the predictive mean squared error as PMSEn(λ) =
1
n ∑

n
i=1( fλ(ti)− f (ti))

2. Let

λopt be the optimal value of the smoothing parameter (that depends on the unknown

function f ) that minimizes the PMSE and let λGCV be the value chosen using generalized

crossvalidation. Also define the inefficiency function I(n) = PMSEn(λGCV)
PMSEn(λopt)

. Then as the

number of data points n ↑ ∞, I(n) ↓ 1.

A proof of this theorem can be found in the paper by Utreras [160] and will not be

reproduced here.

Corollary 6.6 Let the hypotheses of Theorem 6.5 hold. Then the algorithm in Fig. 6.1

has the property that as n ↑ ∞, I(n) ↓ 1 on the union of Sobolev spaces
⋃

(ν,r)∈S1×S2

W r
ν,2.

The corollary is proved in C.7.
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6.4 Results

6.4.1 Simulations

The following function definition was used for generating simulated 3D data:

g(x, y, z) =





4 if x2 + y2 + (z−2.25)2

1.52 ≤ 1

1 otherwise.

This mimics a stiff inclusion in a soft background with a stiffness ratio of 4, with the

center of the inclusion at a depth of 2.25 cm below the surface of the phantom as shown

in Fig. 6.2. Data was generated at different depths z and the reconstruction algorithm

was applied over each plane at constant depth.

x

y

z

2.25 cm

1.5 cm

1 cm

Figure 6.2: Function model used for generating simulated data. The stiffer region is
shaded gray and is surrounded by softer region. The dimensions match the design of an
actual phantom that is used later for experimental evaluation of the algorithm.
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To guide the selection of kernel parameters, this data generator was used to simulate

noisy data with a radial acquisition pattern. Three different cases for P = 6, 12, 16 using

angular increments of π/P, one hundred radial samples over 4 cm and 100 samples

over a depth of 4.5 cm in the z direction were used. The reconstruction was performed

in the bounded box [−2, 2]× [−2, 2]× [0, 4.5]. Zero mean additive Gaussian noise with

a standard deviation of σ = 0.5 was used, and the simulation was run 10 times for each

pair of (ν, r) values, with ν ∈ {0.2, 0.9, 1.5, 2.5} and r ∈ {0.04, 0.1, 0.2, 0.4, 0.6}. Note that

the standard deviation of 0.5 when detecting a jump of 3 units corresponds to a signal to

noise ratio of approximately 15 dB which resembles the kind of noise seen in ultrasound

based SWV measurements. The numerical values used in this simulation were chosen

to match the ground truth that one theoretically expects to observe on a phantom with

an ellipsoidal inclusion.

The SWV is reconstructed on a fine grid of M = 106 points using the Matérn radial

basis function approximation and the predictive mean squared error is estimated using:

PMSE(ν, r) =
1

M ∑
l,m,n

[
ĝ

(
4(l − 50)

100
,

4(m− 50)

100
,

4.5n

100

)
− g

(
4(l − 50)

100
,

4(m− 50)

100
,

4.5n

100

)]2

.

where ĝ is the reconstructed function, g is the true function and the sum is calculated

over a discrete grid of points 0 ≤ l, m, n ≤ 99 and (l, m, n) ∈ Z
3. Mean and standard

deviation PMSE from these Monte Carlo simulations are shown in Tables 6.1, 6.2 and 6.3.

It is clear from these tables that the PMSE improves as the number of radial lines P

increases. The pair (ν, r) = (0.9, 0.4) gives the lowest reconstruction error in all three

cases. The next best choice of parameters, if first order mean squared differentiability is

desired, are (ν, r) = (1.5, 0.4). This choice of kernel parameters is used later for recon-

structions from experimental data acquired on a TM phantom. It is worth noting that
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Table 6.1: Mean and standard deviation of PMSE for P = 6 radial lines

❍
❍
❍

❍
❍

r
ν

0.2 0.9 1.5 2.5

0.04 0.920 (0.019) 0.650 (0.015) 0.551 (0.013) 0.449 (0.011)

0.1 0.546 (0.020) 0.276 (0.011) 0.197 (0.009) 0.136 (0.007)

0.2 0.284 (0.017) 0.117 (0.007) 0.092 (0.006) 0.089 (0.008)

0.4 0.154 (0.011) 0.085 (0.006) 0.088 (0.010) 0.149 (0.041)

0.6 0.126 (0.009) 0.085 (0.007) 0.099 (0.016) 0.264 (0.098)

Table 6.2: Mean and standard deviation of PMSE for P = 12 radial lines

❍
❍
❍

❍
❍

r
ν

0.2 0.9 1.5 2.5

0.04 0.778 (0.015) 0.420 (0.011) 0.313 (0.009) 0.221 (0.007)

0.1 0.341 (0.013) 0.134 (0.006) 0.102 (0.005) 0.087 (0.004)

0.2 0.167 (0.008) 0.084 (0.004) 0.078 (0.004) 0.080 (0.003)

0.4 0.108 (0.005) 0.074 (0.003) 0.078 (0.003) 0.114 (0.011)

0.6 0.096 (0.005) 0.074 (0.003) 0.083 (0.004) 0.167 (0.027)

Table 6.3: Mean and standard deviation of PMSE for P = 16 radial lines

❍
❍
❍

❍
❍

ν
r

0.2 0.9 1.5 2.5

0.04 0.688 (0.022) 0.317 (0.014) 0.223 (0.011) 0.153 (0.008)

0.1 0.265 (0.015) 0.107 (0.006) 0.087 (0.005) 0.079 (0.004)

0.2 0.135 (0.009) 0.075 (0.004) 0.072 (0.003) 0.077 (0.003)

0.4 0.093 (0.006) 0.068 (0.003) 0.074 (0.003) 0.128 (0.021)

0.6 0.084 (0.005) 0.069 (0.003) 0.082 (0.004) 0.206 (0.055)

the reconstruction quality is more sensitive to the choice of range r than the smoothness

ν. A surface plot of the PMSE over a wider range of ν and r values is shown in Fig. 6.3.

By controlling ν and r it is possible to reduce the spoke-wheel artifacts that appear due

to the radial sampling strategy (Fig. 6.4).
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range (r)

0.2

0.4

0.6

0.8

1.0sm
oothness (v)

1

2

3

log(P
M

S
E

)

−2

−1

0

minimizer
(v,r)=(0.9,0.4)
minimizer
(v,r)=(0.9,0.4)

Figure 6.3: PMSE values for different combinations of (ν, r). The local minimizer is also
shown. For every pair of (ν, r) values, the tuning parameter λ was chosen through GCV.
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(c) P=16
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Figure 6.4: Reconstructions from simulated data using different Matérn kernel param-
eters for different numbers of radial lines of data. Top row shows the “spokewheel”
image artifact which can be avoided by proper choice of (ν, r) as seen in the bottom row.
Top row (ν, r) = (2.5, 0.04) and bottom row (ν, r) = (1.5, 0.4).

6.4.2 Experimental Results

Experimental data was acquired on a TM phantom that consisted of an ellipsoidal

inclusion in a soft background with known stiffness. The approximate mathematical de-

scription of the size and location of the inclusion matches the model used for generating

simulated data in Section 6.4.1. Three different data sets are obtained experimentally by

changing the number of radial sampling lines to P = 6, 12 and 16, respectively.
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Fig. 6.5 shows the reconstructed SWV images over one particular image plane pass-

ing through the center of the inclusion. The top row of images show reconstructions

using incorrectly chosen kernel parameters which result in bright streaks along the ra-

dial sampling lines. But when the “optimal” (ν, r) pair is used, this spokewheel artifact

is greatly reduced as seen in the second row of images.
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Figure 6.5: Reconstructions of experimental data using different Matérn kernel param-
eters for different numbers of radial lines of data. Top row shows the “spokewheel”
image artifact is ameliorated by using (ν, r) = (1.5, 0.4) as seen in the bottom row. Top
row (ν, r) = (2.5, 0.04) and bottom row (ν, r) = (1.5, 0.4).
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Inclusion volume is an important quantity that helps clinicians gauge the extent of

the ablated region and determine if additional treatment would be necessary. A clini-

cian usually measures the principal axes of the inclusion from the reconstructed images

displayed on a graphical user interface. Volume estimates for the ellipsoid are obtained

from experimental reconstructions by measuring the three semi-principal axes (a, b, c)

and using the ellipsoid volume formula V = 4
3 πabc. Results for different P along with

the ground truth volume are shown in the box plot in Fig. 6.6.

P=6 P=12 P=16

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

number of radial lines (P)

es
tim

at
ed

 v
ol

um
e 

(c
m

3 )

true volume

Figure 6.6: Box plot showing the volume estimates when the ellipsoidal inclusion is
reconstructed using P = 6, 12, 16 radial acquisition lines. The true volume is shown
using the dashed horizontal line.
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The estimated volume is biased and underestimates the true volume in all three cases

by about 20%. This is expected because there are multiple smoothing and noise filtering

steps in the signal processing leading up to the final images shown in Fig. 6.5, which

erodes the boundary detail. The bias in measuring the principal axes of the ellipsoid

is only about 7% which gets magnified by a factor of 3 when calculating the volume.

It is possible to create a thresholding procedure that converts the reconstructed images

into binary images that are white inside the inclusion and black outside. The clinician

can control a slider to smoothly transition between different levels of thresholding and

obtain images like Fig. 6.7.

(a) Low threshold (b) Mid threshold (c) High threshold

Figure 6.7: Thresholded images created from the P = 16 image from Fig. 6.5(f). As the
threshold is gradually increased, a smaller region of the image appears as an inclusion.

6.5 Discussion

The Matérn kernel reconstruction algorithm developed in this chapter provides an

objective method for choosing the degree of smoothness for 3D reconstructions. This
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Figure 6.8: A 3D render of the stiff inclusion phantom produced from a stack of individ-
ual 2D planes at different depths.

has practical significance because the process of ablation is governed by a complex cou-

pled system of heat transfer and tissue necrosis, that may be difficult to model accurately

[161]. The algorithm presented in this paper has good theoretical properties in that it

applies an “optimum” amount of smoothing by careful choice of the smoothing param-

eter and the kernel function. The final output will be sensitive to the choice of the sets
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S1 and S2. Although it is difficult to develop a general theory on choosing these sets, it

is possible to follow some heuristic guidelines. By inspecting the B-mode image of the

ablated area, the clinician can get an idea of the sharpness of the transition from ablated

region to healthy tissue. Their subjective judgment can be used to guess some reason-

able range of integer values for degree of smoothness for the transition and choosing

ν = m + 1/2 for small integer values of m. Additionally, if the B-mode image suggests

any discontinuities, values of ν < 0.5 that will promote even sharper, non-differentiable

reconstructions may be used. Unlike ν which has an intuitive relationship to the smooth-

ness of the final fit, the choice of scale parameter r is more subtle. As a rule of thumb,

r should be large enough so that more than one neighboring data point is captured

by a kernel centered around any data point, and should not be so large that far away

points are unnecessarily weighted heavily. Different values of r corresponding to the kth

smallest distance between any two data points can be tried for, say, k = 1, 2, 3, . . ., and

using the simulation method discussed previously, the (ν, r) values that provide a local

minimum value of PMSE should be used.
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7

Full Volume Reconstruction using a Markov Random Field

Model

“I like to point out that the model

really should be called Lenz-Ising

model. My supervisor, Dr. Wilhelm

Lenz, had the idea and proposed that

I make a mathematical workout as my

dissertation, . . . ”

Ernst Ising in a letter to S. Kobe, Braz.

J. Phys. Dec. 2000

7.1 Introduction

This chapter presents an efficient 3D reconstruction algorithm for ultrasound elas-

tography data using a sparse iteration based on a Markov random field model. This

method extends the previously reported sheaf reconstruction method to generate com-

plete three dimensional visualizations of shear wave velocities without resorting to an

approximate intermediate step of reconstructing transverse C-planes. The noisy data is

modeled using a Markov random field, and a computationally tractable reconstruction
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algorithm that can handle grids with millions of points is developed. Results from sim-

ulated ellipsoidal inclusion data show that this algorithm outperforms standard nearest

neighbor interpolation by an order of magnitude in mean squared reconstruction error.

Results from phantom experiments show that it also provides a higher contrast-to-noise

ratio by almost 2 dB and better SNR in the stiff inclusion by over 2 dB.

The sheaf of ultrasound planes reconstruction (SOUPR) method was presented in

[162] for obtaining C-plane (i.e., transverse plane) reconstructions of SWVs. Instead

of using an approximate approach of reconstructing individual transverse planes, this

chapter presents a more general method for reconstruction on a full 3D grid while also

handling ill-posed situations where the number of grid points may exceed the number

of data points. A computationally tractable algorithm that can handle large grid sizes

with millions of grid points in 3D is also presented. A standard method for dealing with

fast interpolation of scattered data on a grid is through nearest neighbor interpolation

[163], and has been previously used for 3D reconstruction of B-mode ultrasound images

from 2D slices [164]. The algorithm presented here provides an order of magnitude

better mean squared reconstruction error and higher signal-to-noise ratio than nearest

neighbor interpolation, as demonstrated through simulations and data acquired from a

tissue-mimicking (TM) phantom experiment.

7.2 Markov Random Field Model

A Markov random field (MRF) generalizes the one-dimensional Markov property to

higher dimensions. This is useful, for instance, when the random process is a function

of spatial co-ordinates instead of time. Let {X1, X2, . . . , Xt, . . .} be a sequence of discrete

valued random variables forming a Markov chain. Then the joint conditional density
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function of a variable conditioned on the past satisfies the following property:

P(Xt|X1, . . . , Xt−1) = P(Xt|Xt−1).

The same idea can be extended to a “random field” indexed by spatial co-ordinates as

follows. Consider an infinite lattice of nodes indexed by triplets −∞ < i, j, k < ∞. The

MRF property can be written as:

P(Xi∗,j∗,k∗ |{Xi,j,k : i 6= i∗, j 6= j∗, k 6= k∗})

= P(Xi∗,j∗,k∗ |{Xi∗±1,j∗±1,k∗±1}),

that is, the value at any given node when conditioned on its immediate neighbors is

independent of all other node values. These conditions can be analogously defined

using continuous density functions (instead of discrete probability mass functions) for

random variables defined on a continuous state space. Also, in practice, it is assumed

that the grid size is finite 1 ≤ i ≤ Ny, 1 ≤ j ≤ Nx and 1 ≤ k ≤ Nz where Nx, Ny and Nz

respectively denote the number of grid points along the x, y and z dimensions of the 3D

volume.

ui,j,k

ui,j+1,k

ui,j−1,k

ui,j,k−1

ui,j,k+1

lateral (y)

axial (z)

elevation (x)

ui+1,j,k

ui−1,j,k

di,j,k

Figure 7.1: A 6-neighborhood of grid nodes is used to calculate the clique potential at
each grid point using (7.1). The data point nearest to the central grid point is also used
to maintain data fidelity.
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In the present case, a 3D lattice Lenz-Ising model is used because the final goal is to

reconstruct the measured quantity (shear wave velocities) on a fine grid of points in 3D.

A similar idea was used by Gorce et al. [165] to model radiofrequency (RF) ultrasound

data for spectral processing. Temporarily ignoring the grid points lying on the boundary,

a 6-neighborhood of each node as shown in Fig. 7.1 is used to define “clique potentials”

as follows [166]:

V(ui,j,k) = (ui,j,k − di,j,k)
2 + λ

[(
ui,j+1,k + ui,j−1,k − 2ui,j,k

∆x2

)2

+

(
ui+1,j,k + ui−1,j,k − 2ui,j,k

∆y2

)2

+

(
ui,j,k+1 + ui,j,k−1 − 2ui,j,k

∆z2

)2
]

, [7.1]

where di,j,k is the value of the data point closest to the node at lattice location (i, j, k) and

∆x, ∆y, ∆z are the grid resolutions along the three axes. The intuition behind using this

potential function is as follows. The first term is a data fidelity term that encourages

the node values to be close to the values at nearby data points. The next three terms

are second order finite differences that approximate the second derivative at each node

location to promote smoothness.

Let u denote an NxNyNz × 1 vector consisting of the individual ui,j,k values. The

vectorization step involves storing the value ui,j,k as the (i + (j− 1)Ny + NyNx(k− 1))th

entry in u. The “energy function” is defined as the sum of the potentials over all cliques:

E(u) = ∑
i,j,k

V(ui,j,k).
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By the Hammersley-Clifford theorem, the joint density function for the state u of the

MRF can be expressed as [167]:

p(u) =
1

Z
exp(−E(u))

where Z is a normalization that ensures that p integrates to unity.

7.3 Iterative Reconstruction Algorithm

The goal of a reconstruction algorithm is to estimate the mode of this distribution, i.e.,

the value of u which maximizes p(u), or equivalently, minimizes − log p(u) = log Z +

E(u). In most situations, it is impossible to calculate Z explicitly because it involves

integrating over all possible node values. However, the value of Z is not required for

this minimization problem, and it is sufficient to find a minimizer for E(u).

In practice the reconstruction grid size can be quite large. For instance, even in a

simple case of a hundred grid points along each of the three axes, the total number of

grid points (i.e. the length of the vector u) is 106. A computationally tractable iterative

reconstruction approach is shown in Fig. 7.2. The key idea is to start from an initial

guess for the solution and then gradually refine the guess such that the energy function

value decreases at each iteration. In order to handle large grid sizes, it is important that

the updates should be easy to compute, both in terms of memory storage requirement

and computational complexity.

Consider the following greedy algorithm [168, Ch. 17] which updates the value at

each node myopically, by using values from the previous iteration for each neighbor.

Let u(l) denote the value of the vector at iteration l, for l ≥ 0. The (i, j, k)th element
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of this vector u
(l+1)
i,j,k , is obtained by minimizing the potential function in (7.1) at a fixed

coordinate as follows:

u
(l+1)
i,j,k = arg min

u
(u− di,j,k)

2 + λ





u

(l)
i,j+1,k + u

(l)
i,j−1,k − 2u

∆x2




2

+


u

(l)
i+1,j,k + u

(l)
i−1,j,k − 2u

∆y2




2

+


u

(l)
i,j,k+1 + u

(l)
i,j,k−1 − 2u

∆z2




2

 .

This can be solved in closed form by setting the derivative of the function on the right

with respect to u to zero:

u
(l+1)
i,j,k =

1

1 + 4λ
(

1
∆x4 +

1
∆y4 +

1
∆z4

)
[

di,j,k +
2λ

∆x4
(u

(l)
i,j+1,k + u

(l)
i,j−1,k)

+
2λ

∆y4
(u

(l)
i+1,j,k + u

(l)
i−1,j,k) +

2λ

∆z4
(u

(l)
i,j,k+1 + u

(l)
i,j,k−1)

]
.

This is similar to the iterated conditional modes (ICM) technique described by Besag

[169]. However, note that the update is only a linear combination of the components of

u(l). Therefore, unlike the original ICM algorithm where each pixel is changed individ-

ually, the complete vector can be updated in a single step using the following matrix

formulation:

u(l+1) =
1

1 + 4λ
(

1
∆x4 +

1
∆y4 +

1
∆z4

)d + Au(l) [7.2]
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where d denotes is a vector of di,j,k values obtained via nearest neighbor interpolation

[170, 171]. The matrix A = [amn] is defined as:

amn =





2λ/∆x4

1+4λ

(
1

∆x4 +
1

∆y4 +
1

∆z4

) if n = m± 1

2λ/∆y4

1+4λ

(
1

∆x4 +
1

∆y4 +
1

∆z4

) if n = m± Ny

2λ/∆z4

1+4λ

(
1

∆x4 +
1

∆y4 +
1

∆z4

) if n = m± NyNx

0 otherwise.

[7.3]

where boundary cases are handled by only considering valid indices 1 ≤ m, n ≤ NxNyNz.

It is worth noting the computational complexity of the update equation (7.2). The matrix

A is NxNyNz × NxNyNz and the matrix-vector product would require O(N2
x N2

y N2
z ) mul-

tiplications and additions. This can be prohibitive for large grid sizes with millions of

grid points. However, note that A is very sparse and has at most six non-zero entries per

row as seen from (7.3). Therefore, each element in Au(l) can be calculated in constant

time, resulting in an overall complexity of O(NxNyNz).

The following theorem asserts that the sequence of iterates generated in (7.2) must

eventually converge to a limit point. This is proved using a contraction mapping argu-

ment in the Appendix.

Theorem 7.1 The sequence of iterates {u(l)} generated by the algorithm in Fig. 7.2 has

a limit point.

Proof: See Section C.8. �
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Input: d: vector of nearest neighbor interpolation
A: update matrix defined in (7.3)
∆x, ∆y, ∆z: grid resolutions
λ: smoothing parameter
TOL: tolerance for difference between iterates

Output: u: final 3D reconstruction
1: l ← 0
2: u(0) ← d
3: repeat
4: u(l+1) ← 1

1+4λ

(
1

∆x4 +
1

∆y4 +
1

∆z4

)d + Au(l)

5: l ← l + 1
6: until ||u(l+1) − u(l)|| < TOL.
7: u← u(l)

Figure 7.2: Iterative reconstruction algorithm which starts with an initial guess equal to
the nearest neighbor interpolation and refines it using a sparse matrix update equation.
The stopping criterion used here examines the progress from one iteration to the next
and stops if the norm is smaller than a user defined tolerance. Other stopping criteria
(such as a fixing the number of iterations ahead of time) may also be used.

7.4 Simulated Ellipsoid Data

The mean squared error (MSE) performance of the 3D reconstruction algorithm is

evaluated using simulated ellipsoidal inclusion data. The “ground truth” SWV values

are defined in an ellipsoidal region as follows:

f (x, y, z) =





4 if x2

12 +
y2

12 +
(z−2.25)2

1.52 ≤ 1

1 otherwise.

These numbers are chosen to closely match the dimensions (in cm) and SWV values (in

m/s) of a TM phantom used in Section 7.5. The sheaf acquisition pattern is mimicked by

sampling this ellipsoid using a cylindrical co-ordinates grid with 4, 6, 12 and 16 image

planes. Each image plane is sampled over a 100× 100 grid, 4 cm wide and 4.5 cm high.

Simulated i.i.d Gaussian noise is added to this ground truth data with various noise
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Figure 7.3: Simulated mean squared error values from the ellipsoidal inclusion data with
different processing parameters. The mean squared error was calculated with respect
the ground truth model and the average and standard deviation was calculated over 100
independent realizations with added Gaussian noise. The reconstruction error from a
simple nearest neighbor interpolation approach is also shown for comparison.

levels ranging from 5 dB to 20 dB with respect to the inclusion. A 3D reconstruction

is generated using the MRF algorithm listed in Fig. 7.2 with λ = 0.01, and a grid of

size 100× 100× 100 in a parallelepiped with lateral and elevational dimensions of 4 cm
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each and depth of 4.5 cm, so that ∆x = ∆y = 0.04 cm and ∆z = 0.045 cm. The mean

and standard deviation of the reconstruction MSE is calculated over 100 independent

realizations of the noisy data. For comparison, the same data is also reconstructed us-

ing nearest neighbor interpolation. As seen in Fig. 7.3, in all cases the MRF algorithm

provides lower MSE than nearest neighbor interpolation.

7.5 Tissue Mimicking Phantom Experiment

7.5.1 Experimental Setup

An oil-in-gelatin based TM phantom [172] consisting of a stiff ellipsoidal inclusion

embedded in a softer background material was used for acquiring EVE data. The phan-

tom consisted of a needle firmly glued to the inclusion to simulate the needle in an

ablation procedure. A shear wave pulse is set up in the TM phantom by vibrating the

needle using a piezoelectric actuator. The actuator is driven by a controller (Physik

Instrumente, Germany) that is synchronized with the ultrasound imaging system (Ul-

trasonix SonixTOUCH, Canada). A half-sinusoid pulse of amplitude 100 microns and

width of 20 ms is used to generate the shear wave.

Table 7.1: Shear wave velocity estimates

Algorithm ROI 4 slices 6 slices 12 slices 16 slices

MRF
bkg 1.06± 0.18 1.00± 0.15 1.05± 0.16 1.05± 0.19
inc 2.03± 0.71 1.99± 0.67 1.95± 0.65 1.97± 0.65

NNB
bkg 1.06± 0.19 1.00± 0.17 1.05± 0.19 1.05± 0.22
inc 2.01± 0.79 1.98± 0.75 1.92± 0.76 1.93± 0.77

Mean and standard deviation of shear wave velocites (in m/s) ob-
tained from five independent datasets are shown here. The MRF re-
construction has a lower variance in all cases. (MRF=Markov random
field algorithm, NNB=nearest neighbors interpolation, bkg= back-
ground, inc=inclusion).
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Figure 7.4: 3D reconstructions using 4 slices in (a), (b) and 16 slices in (c), (d) using the
MRF reconstruction algorithm in (a), (c) and nearest neighbor interpolation (NNB) in
(b), (d). NNB reconstructions appear more blocky as compared to the MRF method, and
have poorer signal-to-noise ratio.

The ultrasound system is operated in research mode which allows the use of external

triggering and a custom scan sequence. A conventional focussed transmit acquisition
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method used to generate B-mode scans does not provide sufficiently high frame rates

to track a shear wave. Therefore a phase locked mechanism described in [7] is used to

assemble apparent high frame rate RF echo data frames. In this method, multiple pulse

vibrations are applied to the needle and only a narrow vertical band of RF data in the

image plane is acquired after each vibration. This rests on a reasonable assumption that

every pulse has almost identical amplitude and width and there is sufficient delay to

allow perturbations from the previous vibration to decay to zero. The 128 element linear

array transducer is operated at a center frequency of 5 MHz with the RF data sampled

at 40 MHz.

Table 7.2: Contrast and contrast-to-noise ratios

Algorithm 4 slices 6 slices 12 slices 16 slices

C
MRF 5.70 5.97 5.43 5.53
NNB 5.56 5.89 5.30 5.33

CNR
MRF 4.04 4.81 3.67 3.27
NNB 2.08 2.81 1.45 1.03

Values of contrast (C) and contrast-to-noise ratios (CNR)
in dB between the inclusion and the background. All
numbers are in dB. The Markov random field algorithm
provides slightly better C than nearest neighbor interpola-
tion and also provides higher CNR. (MRF=Markov random
field algorithm, NNB=nearest neighbor interpolation).

Table 7.3: Signal to noise ratios

ROI Algorithm 4 slices 6 slices 12 slices 16 slices

bkg
MRF 22.65 23.14 21.72 17.78
NNB 21.74 21.87 20.24 16.21

inc
MRF 11.14 11.34 10.72 10.47
NNB 9.03 9.21 8.51 8.22

Signal to noise ratios (SNR) in dB calculated from par-
allelepiped shaped ROIs in the background and in-
clusion. The MRF reconstruction has a higher SNR
in all cases. (MRF=Markov random field algorithm,
NNB=nearest neighbors interpolation, bkg= background,
inc=inclusion).
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7.5.2 Shear Wave Velocity Reconstruction

The method used for reconstructing individual image planes is identical to the one

described in [162]. It is assumed that the shear wave pulse travels laterally in the image

plane with the needle acting as a line source and particle displacements are purely

axial (aligned with the direction of the ultrasound beam lines). A 1D crosscorrelation-

based displacement estimation algorithm with axial window length of 2 mm and 1.5 mm

overlap is used to determine particle displacements for each pair of consecutive frames.

The resulting frame-to-frame displacement movie can be used to localize the shear wave

pulse in both space and time. Due to the lateral propagation assumption, the shear wave

trajectory can be traced along lines at constant depth radiating away from the needle.

The time of peak displacement at each pixel is used as an estimate for the arrival time

of the shear wave pulse with sub-frame-number resolution using a 5-point parabolic fit

around the peak.

7.5.3 3D Reconstruction Results

SWV measurements are averaged over five independent datasets obtained on the

same phantom to average out any mis-registration errors from manual placement of the

transducer probe at different angles [162]. The SWV values from the two reconstruction

methods are shown in Table 7.1. Although both methods give similar mean estimates,

the MRF algorithm has a lower standard deviation.

Various image quality statistics [144, 138] are calculated to compare the reconstruc-

tion quality from the MRF algorithm and the NNB interpolation method. Parallelepiped

shaped regions of interest (ROI) of size 5×5×10 mm3 are used to calculate mean and

standard deviations of SWVs in the background and inclusion. Signal to noise ratio
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(SNR) is calculated using SNRinc = 20 log10
µinc
σinc

where the subscript “inc” denotes inclu-

sion. A similar formula is used for the background (“bkg”). Contrast is calculated using

C = 20 log10
µinc
µbkg

and contrast-to-noise ratio (CNR) using CNR = 20 log10

µinc−µbkg√
σ2

inc+σ2
bkg

.

Table 7.2 shows C and CNR values for the two methods with different numbers of

image slices used for 3D reconstruction. The MRF method provides slightly higher con-

trast, and also outperforms NNB interpolation in the CNR values by 2 dB. Moreover, its

SNR is better by 1 dB in the background region and by 2 dB in the inclusion. These im-

provements in CNR and SNR can be traced back to the fact that the SWV estimates pro-

vided by the MRF algorithm have lower standard deviations because the clique potential

model in (7.1) implicitly applies a low pass noise filter by constraining the derivative at

each grid point.

Sample 3D reconstructions from the two methods in the extreme cases of 4 and 16

image slices are shown in Fig. 7.4. Reconstructions from NNB interpolation appear

blocky, because it fills all the missing grid values with the SWV value from the nearest

data point resulting in a “piecewise constant” appearance.

7.6 Discussion

This chapter presented a 3D reconstruction algorithm based on Markov random fields

for electrode vibration shear wave elastography. The model-based reconstruction algo-

rithm provides better image quality metrics than standard nearest neighbor interpola-

tion, with improved SNR and CNR. Although the results presented here show SWV

data, the reconstruction algorithm is quite general and can be applied to other quantita-

tive measurements such as strain, temperature or shear modulus. Moreover, it can also

handle ill-posed inverse problems where the grid size is much larger than the number
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of measurements and the measurements may be scattered at arbitrary locations in a 3D

volume.
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8

Conclusion and Future Work

The lyf so short, the craft so long to

lerne.

Chaucer, Parlement of Foules

8.1 Summary of Contributions

A variety of model-based image reconstruction algorithms using tools from statisti-

cal signal processing and optimization were developed as part of this dissertation. In

Chapter 3, a method for high frame rate data acquisition using plane wave insonifica-

tion was described, and a prototype was implemented on a research ultrasound scanner.

Compared to the traditional focussed transmit acquisition method, plane wave imaging

provides lower depth of penetration and signal-to-noise ratios due to the absence of a

“narrow pencil-like acoustic beam.” The results from this chapter showed that with a

few angular plane wave insonifications together with delay-sum beamforming and com-

pounding can be used to track a shear wave pulse in electrode vibration elastography.

Chapter 4 developed a stochastic model for noisy arrival time data which can be used

for tracking a shear wave pulse from particle displacement movies. A hidden Markov

model framework was presented which encoded the underlying shear wave velocity
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(SWV) values as hidden system states that exhibit a “jump behavior.” Two different

maximum a posteriori estimation algorithms were developed to reconstruct two dimen-

sional (2D) SWV images. Additionally, a brute force optimization based approach was

also presented that treated the arrival time information as a piecewise linear function

with unknown number and locations of changepoints. These algorithms provide dif-

ferent desirable theoretical properties, while providing good boundary delineation and

image quality metrics.

A natural way for extending 2D imaging to three dimensions (3D) using a sheaf ac-

quisition was presented in Chapter 5. Reconstruction quality was gauged using contrast

and contrast-to-noise ratio measurements and changes in quality from using increasing

number of planes in the sheaf were quantified. The highest contrast of 5 dB was seen

between the stiffest and softest regions of the phantom. It was shown that under certain

idealizing assumptions on the true shape of the ablation, good reconstruction quality

while maintaining fast processing rate can be obtained with as few as 6 imaging planes

suggesting that the method is suited for parsimonious data acquisitions with very few

sparsely chosen imaging planes.

A model based 3D reconstruction algorithm using the Matérn kernel was developed

in Chapter 6. This algorithm rests on the assumption that the transition region be-

tween the stiff (ablated) and soft (healthy) tissue is not abrupt, but may be described

by a smooth function with a degree of smoothness that can be learned from data. This

idea was formalized using reproducing kernel Hilbert space theory, and a smoothing

algorithm that automatically estimates the kernel parameters from data was presented.

Validation is performed on data acquired from a tissue mimicking phantom. Volume

estimates were found to be within 20% of the true value.
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Chapter 7 extended the sheaf reconstruction method from Chapter 5 to generate

complete 3D visualizations of SWV without resorting to an approximate intermediate

step of reconstructing transverse C-planes. The noisy data was modeled using a Markov

random field, and a computationally tractable reconstruction algorithm that can handle

grids with millions of points was developed. Results from simulated ellipsoidal inclusion

data showed that this algorithm outperforms standard nearest neighbor interpolation by

an order of magnitude in mean squared reconstruction error. Results from phantom

experiments showed that it also provides a higher contrast-to-noise ratio by almost 2 dB

and better SNR in the stiff inclusion by over 2 dB.

8.2 Future Work

Bayesian models are quite versatile because they can be used for incorporating prior

information that can potentially be used to improve boundary visualization. For instance

if additional information such as temperature distribution or strain maps are available,

they can be used as priors in a constrained image reconstruction framework. The intu-

ition is that high temperature regions are probably completely ablated and hence should

be correlated with the presence of stiffer tissue with low strain values and higher SWVs.

In a clinical setting, additional information is often available as pre-procedural CT or

MRI scans. This opens the possibility of including SWV images as part of a multi-

modality system which can co-register different imaging modalities. This may be used

to improve procedure planning and real-time control of percutaneous ablation proce-

dures [173, 174].

The angular plane wave insonification method developed in Chapter 3 was imple-

mented with multiple needle vibrations, where each angle was acquired with a frame

rate of around 2 kHz after each vibration. This implementation can be improved by
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changing the ultrasound pulse sequence so that the plane waves are immediately fired

by looping through the list of angles [111, Fig.13] and compounded using a “slow time”

frame-to-frame moving average filter. This method will require only one needle vibration

and a higher frame rate by a factor equal to the number of angles used. (For instance, if

the acquisition involves 10 insonification angles, the base frame rate must be increased

to 20 kHz so that an effective frame rate of 20/10 = 2 kHz is still maintained.) A phased

array transducer can be used to obtain greater imaging depth and larger field of view

with a sector scan. High frame rate imaging will require development of beamforming

algorithms optimized for the phased array geometry. The possibility of improvements

in frame rate and image quality through diverging beams [175] and coded excitations

[176] should also be explored.

The 3D reconstruction algorithms developed in this dissertation use SWV values es-

timated from 2D image slices. The next step should involve full wave inversion with a

3D displacement field. This may be achieved through high frame rate volume acquisi-

tions and tracking wave motion laterally and in elevation [142]. The tradeoff between

3D volume rate and image quality should be studied further through simulations and

experiments with plane wave imaging sequences with a matrix array transducer.

Although research efforts have not yet conclusively proven the utility of viscoelastic

parameters for discriminating between pathological conditions in liver tissue [177, 178],

there has been increasing interest in development of methods for measuring the fre-

quency dependence of SWV [179, 180, 181]. These methods make certain assumptions

about the viscoelastic model for tissue (such as the Kelvin-Voigt model) and attempt to

estimate the complex shear modulus by measuring shear wave and amplitude attenua-

tion as a function of distance from the source and also the wave velocity. The electrode

vibration technique used throughout this dissertation can also be used for estimating
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viscoelastic properties of tissue, by using continuous vibration at a known frequency

and estimating wave velocity as a function of frequency (similar to the concept of dis-

persion vibrometry [61]). Alternatively, a pulse vibration method can also be used and

the deformation in the pulse shape as it travels through the viscoelastic medium can be

estimated, in addition to following the peak using the time-to-peak method.

Future work should also explore the clinical applicability of the data acquisition and

image reconstruction methods developed in this dissertation. This will require develop-

ment of a protocol for acquiring data from ablations created in vivo in animal models and

subsequently through patient studies. Design of a mechanical apparatus for orienting

the imaging planes close to the needle should be considered. The sheaf acquisition tech-

nique requires accurate knowledge of the angle between different imaging planes, hence

it will be advantageous to design an assembly that holds the needle in place and allows

the transducer to rotate around the needle through a known angle. A 3-axis positioning

system may be needed in free hand elastography applications.
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[133] G. Goodwin and J. Agüero, “Approximate em algorithms for parameter and state
estimation in nonlinear stochastic models,” in Proc. 44th IEEE Conference on Decision
and Control, (Seville, Spain, December), pp. 12–15, 2005.

[134] T.-J. Yen, “A majorization-minimization approach to variable selection using spike
and slab priors,,” Ann. of Stat., vol. 39, pp. 1748–1755, Jun. 2011.

[135] I. Csiszar and G. Tusnady, “Information geometry and alternating minimization
procedures,,” Statistics and Decisions, vol. Suppl. 1, pp. 205–237, 1984.

[136] R. Yeung and T. B.-A. Algorithms, Information Theory and Network Coding,. Springer,
1 ed., 2008. Ch. 9 Sec. 9.3, pp. 222–226.

[137] J. Bucklew, “Two results on asymptotic performance of quantizers,,” IEEE Trans.
Info. Theory, vol. 30, p. 2, Mar. 1984.

[138] T. Varghese and J. Ophir, “An analysis of elastographic contrast to noise ratio,”
Ultrasound Med. Biol., vol. 24, pp. 915–924, Jul. 1998.

[139] T. Varghese, “Quasi-static ultrasound elastography,” Ultrasound Clinics, vol. 4,
pp. 323–338, Jul. 2009.

[140] E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability
of heterogeneous elastography phantoms made from oil dispersions in aqueous
gels,” Ultrasound Med. Biol., vol. 32, no. 2, pp. 261–270, 2006.



148

[141] R. J. DeWall, T. Varghese, and C. L. Brace, “Quantifying local stiffness variations
in radiofrequency ablations with dynamic indentation,” IEEE Trans. Biomed. Eng.,
vol. 59, pp. 728–735, Mar. 2012.

[142] J.-l. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, M. Tan-
ter, et al., “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 62, no. 6, pp. 1059–1065, 2015.

[143] P. Abolmaesumi, S. Salcudean, W.-H. Zhu, M. Sirouspour, and S. DiMaio, “Image-
guided control of a robot for medical ultrasound,” IEEE Trans. Robot. Autom.,
vol. 18, pp. 11–23, Feb. 2002.

[144] T. Varghese and J. Ophir, “A theoretical framework for performance character-
ization of elastography: the strain filter,” IEEE Trans. Ultrason., Ferroelectr., Freq
Control, vol. 44, pp. 164–172, Jan. 1997.

[145] M. Elkateb Hachemi, S. Calle, and J. P. Remenieras, “Transient displacement in-
duced in shear wave elastography: comparison between analytical results and
ultrasound measurements,” Ultrasonics, vol. 44 Suppl 1, pp. e221–225, Dec. 2006.

[146] G. Wahba, Spline Models for Observational Data. CBMS-NSF Regional Conference
Series in Applied Mathematics, Society for Industrial and Applied Mathematics,
1990.

[147] L. Wasserman, All of Nonparametric Statistics (Springer Texts in Statistics). Springer,
Oct. 2005.

[148] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learn-
ing: with Applications in R. Springer Texts in Statistics, Springer, 2013.

[149] H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized
ultrasound elastography,” IEEE Trans. Med. Imag., vol. 30, pp. 928–945, Apr. 2011.

[150] H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, and G. Hager, “Ultra-
sound elastography: A dynamic programming approach,” IEEE Trans. Med. Imag.,
vol. 27, pp. 1373–1377, Oct. 2008.

[151] V. Naumova, S. V. Pereverzyev, and S. Sivananthan, “Extrapolation in variable
rkhss with application to the blood glucose reading,” Inv. Prob., vol. 27, no. 7,
pp. 1–13, 2011.

[152] J. Carew, R. Dalal, G. Wahba, and S. Fain, “A nonparametric method for estimation
of arterial wall shear stress,” in Proc. of International Soc. of Magnetic Resonance in
Med. (ISMRM), vol. 12, p. 1924, 2004.



149

[153] G. Wahba and Y. Wang, “When is the optimal regularization parameter insensitive
to the choice of the loss function?,” Commun. in Stat. - Theory and Methods, vol. 19,
no. 5, pp. 1685–1700, 1990.

[154] G. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline functions,” J.
Math. Anal. & Appl., vol. 33, Jan. 1971.

[155] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.
Properties of Random Fields, ch. 2, sec. 2.7, pp. 31–33.

[156] B. Minasny and A. B. McBratney, “The Matérn function as a general model for soil
variograms,” Geoderma, vol. 128, no. 3-4, pp. 192–207, 2005.

[157] S. Ramani, D. Van De Ville, T. Blu, and M. Unser, “Nonideal sampling and regu-
larization theory,” IEEE Trans. Sig. Proc., vol. 56, no. 3, pp. 1055–1070, 2008.

[158] R. S. Strichartz, A guide to distribution theory and Fourier transforms. Singapore:
World Scientific, 2003.

[159] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions With
Formulars, Graphs, and Mathematical Tables, vol. 55. Dover Publications, 1964.

[160] F. Utreras, “On generalized cross-validation for multivariate smoothing spline
functions,” SIAM J. Scientific and Stat. Computing, vol. 8, no. 4, pp. 630–643, 1987.

[161] D. Yang, M. Converse, D. Mahvi, and J. Webster, “Measurement and analysis of
tissue temperature during microwave liver ablation,” IEEE Trans. Biomed. Eng.,
vol. 54, pp. 150–155, Jan. 2007.

[162] A. Ingle and T. Varghese, “Three-dimensional sheaf of ultrasound planes recon-
struction (SOUPR) of ablated volumes,” IEEE Trans. Med. Imag., vol. 33, pp. 1677–
1688, Aug. 2014.

[163] S. Arya and D. M. Mount, “Approximate nearest neighbor queries in fixed dimen-
sions,” in Proc. 4th Annual ACM-SIAM Symp. on Discrete Algorithms, SODA 1993,
(Philadelphia, PA, USA), pp. 271–280, 1993.
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A

Artifacts in Shear Wave Imaging

Shear wave speed estimation from high frame rate ultrasound elastography data is a

challenging inverse problem due to the requirement of taking derivatives and reciprocals

with noisy data. Some of the sources of artifacts in shear wave imaging are, physical lim-

itations of the ultrasound imaging modality, reconstruction algorithm used for solving

the inverse problem, inaccurate assumptions about mechanical properties of tissue and

limitations of the method of shear wave generation. A short review of existing literature

on sources and mitigation of such artifacts is presented in the following paragraphs.

Two commonly used techniques proposed in literature for localizing shear waves in

space and time are crosscorrelation based time of arrival method [109] and the time to

peak method [54]. Both methods suffer from artifacts resulting from reflection of shear

waves traveling through disparate media. For example, [9] demonstrate the presence

of false peaks in the reconstructed shear wave velocity maps, using both synthetic and

experimental data. The correlation based wave localization procedure makes use of both

phase and amplitude information of the “template” shear wave pulse. Although this

results in an algorithm that is more robust to noise, it causes confusion from the wave

traveling in the opposite direction after reflection. Even though this reflected wave may

have much smaller amplitude than the forward traveling wave, the exact alignment of

phase causes a false peak in the correlation values. Reflection artifacts may be mitigated
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using frequency domain directional filters on the particle velocity maps as proposed in

ultrasound elastography by Deffieux et al. [182] and demonstrated experimentally by

Song et al. [57].

Tracking shear waves in homogeneous media is slightly less challenging than the case

of disparate media where the locations and number of interfaces is unknown. Nightin-

gale et al. presented two different algorithms for estimation of shear wave velocity in ho-

mogeneous media that are robust to outliers: the Radon sum method [66] and RANSAC

method [65]. They filter the noisy displacement maps using a “quadratic motion filter”

that may be the cause for a bias in the final velocity estimates.

Inclusion boundary blurring can be observed in some shear wave velocity images es-

pecially when the spatial frequency of the shear wave is low. This is a physical limitation

of the imaging technique due to the fact that the resolution is limited by the wavelength

of the shear wave pulse. Moreover, as noted in [9], the boundary blurriness is accompa-

nied by overestimation in the wave velocity estimate in the interior of a stiff inclusion.

These artifacts are worse when the inclusion is stiffer because of extreme bending of

of the velocity level curves that may be confused as self intersecting loops due to mea-

surement noise. In a later paper, the same authors suggest the use of total variation

smoothing to mitigate some of these artifacts.

High velocity artifacts can result above and below the inclusion boundaries if the

pure lateral propagation assumption does not hold. This is typically the case in elec-

trode vibration elastography where particle motion at locations deeper than the end of

the ablation needle is not purely transverse and may have a lateral component. Such ar-

tifacts can be reduced by assuming two orthogonal velocity components and picking the

component with better SNR [183]. Wave speed inverse problems are often simplified by
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Figure A.1: This figure shows various structures and artifacts present in the SWV image
plane. The red arrow points to the stiff ablated region and the black arrow points to the
partially ablated region. There is a low velocity artifact near the needle shown by the
blue arrow at the center. There are high velocity artifacts close to the edge of the image
shown with green arrows in the top right and bottom left corners. The violet arrow near
the top of the image plane points to a high velocity artifact due to the needle.

making certain idealizing assumptions about tissues being linearly elastic, incompress-

ible and ignore viscosity. Although these assumptions are not detrimental to phantom

experiments, they do cause additional artifacts when testing data from real tissues. In

viscoelastic media, shear wave speed is frequency dependent. This is manifested through

the change in shape of the shear wave shape as it travels away from the source. A mod-

ified search algorithm [184, 67] allows a scaling factor for the wave template to obtain

better crosscorrelation values.

Various artifacts can also be seen in the SWV maps and the C-plane reconstructions.

These are summarized in Fig. A.1. High velocity artifacts appear above and below the

inclusion because the assumption of purely lateral shear wave propagation may not hold

those regions. Removal of such artifacts has been studied previously [141] and can be

incorporated into the 3D reconstruction algorithm. High velocity artifacts are also seen

close to the edge of the image plane due to limited imaging aperture in those areas.
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Methods for removal of artifacts due to wavefront distortion and reflection have been

discussed previously [9, 67] and have the potential to improve reconstruction quality for

the 3D case too. Low velocity artifacts seen in areas adjacent to the needle have been

observed in previous EVE studies [7] and require further investigation. The authors con-

jecture that the shear wave pulse takes some time to accelerate to its maximum speed

after the needle is vibrated resulting in perceived low velocity close to the needle source.

This artifact may not be a serious hurdle in application because regions immediately ad-

jacent to the needle are certainly ablated; confirming the location of the outer boundary

of the ablation is more crucial. Results in a recent paper by Deffieux et al. [70] suggest

that the uncertainty in measuring higher shear wave velocities is inherently higher. This

indicates there is a lower limit to how accurately SWV maps can be reconstructed inside

the stiff inclusion.
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B

Algorithm Pseudocode

B.1 Particle Filter Algorithm

Input: {Mi
k, ωi

k}: set of particles and weights

Output: {Mi
k, ωi

k}: updated set of particles and weights

1: procedure Resample({Mi
k, ωi

k})
2: Initialize cumulative distribution function c1 ← 0
3: for i = 2 : Ns do
4: ci ← ci−1 + wi

k
5: end for
6: Draw u1 uniformly randomly from [0, 1/Ns]
7: for i = 1 : Ns do
8: ui ← u1 + (i− 1)/Ns

9: while ui > cj do
10: j← j + 1
11: end while
12: Mi

k ← M
j
k

13: ωi
k ← 1/Ns

14: end for
15: end procedure

Figure B.1: Resampling algorithm used within the particle filter algorithm shown in
Fig. B.3
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Input: {Mi
k, ωi

k}
Ns
i=1: set of particles and weights

Output: {ωi
k}

Ns
i=1: set of backward smoothed weights

1: procedure BackwardSmooth( {Mi
k, ωi

k}
Ns
i=1 )

2: for k = N − 1 : 1 do
3: for i = 1 : Ns do

4: Recalculate ωi
k ← ∑

Ns
j=1 ω

j
k+1

ωi
k p(M

j
k+1|Mi

k)

∑
Ns
l−1 ωl

k p(M
j
k+1|Ml

k)

5: end for
6: end for
7: end procedure

Figure B.2: Backward smoothing routine used in the particle filter algorithm shown in
Fig. B.3
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Input: X1:N: noisy data vector of length N
Ns: number of particles to use
NT: threshold for resampling
σ2: Gaussian noise variance
p: probability of staying in the same slope value
[LB, UB]: lower and upper bounds for slope values

Output: M1:N : optimal state sequence
1: procedure ParticleSmoother({Xk}N

k=1, Ns, NT, p, σ2, [UB, LB])
2: for k = 1 : N do
3: for i = 1 : Ns do
4: Randomly draw Mi

k ∼ p(Mi
k|Mi

k−1) Eq. (4.4)

5: Update weight ωi
k using Eq. (4.9) for each i = 1 : Ns

6: end for
7: Normalize all weights ωi

k ← ωi
k/ ∑

Ns
i=1 ωi

k

8: Calculate effective sample size Ne f f ← 1

∑
Ns
i=1(ω

i
k)

2
.

9: if Ne f f < NT then

10: Covariance matrix Sk←cov(Mi
k, ωi

k) and Cholesky factorization DkDT
k = Sk

11: {Mi
k, ωi

k}
Ns
i=1 ←Resample({Mi

k, ωi
k}

Ns
i=1)

12: for j = 1 : Ns do
13: Draw ǫi ∼ Epanechnikov Kernel
14: Mi

k ← Mi
k + Dkǫi

15: end for
16: end if
17: end for
18: {ωi

k}
Ns
i=1 ← BackwardSmooth({Mi

k, ωi
k}

Ns
i=1)

19: for k = 1 : N do
20: Calculate optimal state Mk ← ∑

Ns
i=1 ωi

k Mi
k by Eq. (4.10).

21: end for
22: end procedure

Figure B.3: Details of the particle filter algorithm in pseudocode adapted from Algorithm
6 in the paper by Arulampalam et al.[115] and Section V of Doucet et al.[125].
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B.2 MAPSlope-FastTrellis Algorithms

Input: x1:N: noisy data vector of length N
M: number of slope quantization levels
σ2: Gaussian noise variance
p: probability of staying in the same slope value

Output: s∗1:N: MAP slope sequence
L∗: log-likelihood for MAP slope sequence

1: procedure FastTrellis(x1:N, M, σ2, p)
2: I(0, 0)← 0
3: for n = 1 to N do
4: for k = 0 to (M− 1)n do
5: if n == 1 then

6: I(1, k)← − 1
2σ2

(
x1 − k

M−1

)2
+ log 1

M

7: Π(1, k)← [0, k].
8: else
9: I(n, k)←maxj[I(n−1, j) + branch reward of (n−1, j) to (n, k)]

10: ĵ← arg maxj[I(n− 1, j) + branch reward of (n− 1, j) to (n, k)]

11: Π(n, k)← Append(Π(n− 1, ĵ), k)
12: end if
13: end for
14: end for
15: L∗ ← maxk I(N, k)
16: s∗1:N ← Π(N, arg maxk I(N, k))
17: return (s∗1:N, L∗)
18: end procedure

Figure B.4: Fast dynamic program for searching an optimal route through a linearly
growing trellis (like the one shown in Fig. 4.3).
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Input: x1:N: noisy data vector of length N
M: number of slope quantization levels
σ2: initial guess for the Gaussian noise variance
p: guess probability of staying in the same slope value
τ: threshold for likelihood value convergence test
MAXIT: maximum number of iteration

Output: s∗1:N: MAP slope sequence

σ∗2: estimated noise variance
p∗: estimated value of p

1: procedure MAPSlope(x1:N , M, σ2, p, τ, MAXIT)
2: loop← 1
3: L← −∞

4: CONVERGED← False
5: repeat
6: if using FastTrellis then
7: (s∗1:N, L∗)←FastTrellis(x1:N, M, σ2, p)
8: else if using another optimization routine then
9: s∗1:N ← arg max

s1:N

log p(x1:N, s1:N |σ2, p)

10: L∗ ← log p(x1:N, s∗1:N |σ2, p)
11: end if

12: σ∗2 ← 1
N ∑

N
n=1

(
xn −∑

i
j=1 s∗j

)2

13: p∗ ← 1
N−1 ∑

N−1
n=1 1{0}(s

∗
n+1 − s∗n)

14: loop← loop + 1
15: if (|L∗ − L| < τ) ∨ (loop > MAXIT) then
16: CONVERGED← True
17: end if
18: p← p∗, σ2 ← σ∗2, L← L∗

19: until ¬CONVERGED
20: return (s∗1:N, σ∗2, p∗)
21: end procedure

Figure B.5: MAPSlope algorithm for maximum a posteriori slope estimation in piece-
wise linear functions with alternating maximization parameter estimation.
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C

Proofs and Derivations

C.1 Derivation of EM Iterations

The complete data likelihood function is given by

p(x1:N, s1:N |θ) =
N

∏
i=1

p(xi|s1:N, θ)
N

∏
k=2

p(sk|sk−1, θ)

= ∏
i

f

(
xi;

i

∑
j=1

sj, σ2

)
∏

k

[
p 1{0}(sk−sk−1) +

1−p

M−1
1c
{0}(sk−sk−1)

]

where f (x; µ, σ2) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
is the univariate Gaussian probability density

function parametrized by its mean and variance.

Next, the auxiliary function for EM iterations is constructed as follows:

Q(θ, θ′) = ∑
s1:N∈SN

[log p(x1:N, s1:N |θ)] p(x1:N, s1:N |θ′)

= ∑
s1:N∈SN

∑
i

log f

(
xi,

i

∑
j=1

sj, σ2

)
p(x1:N, s1:N |θ′)

+ ∑
s1:N∈SN

∑
k

log

[
p 1{0}(sk − sk−1) +

1− p

M− 1
1c
{0}(sk − sk−1)

]

·p(x1:N, s1:N |θ′) [C.1]

=: T1 + T2
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where SN is the set of all valid slope value sequences of length N, and the primes denote

old values of the parameters from the previous iteration.

The two terms can now be independently optimized due to decoupling of parameters

σ2 and p.

Estimating σ2 Setting the gradient of T1 with respect to σ2 to zero yields

σ2 =

N

∑
n=1

∑
s1:n∈Sn

(
xn −∑

n
j=1 sj

)2
p(x1:N, s1:n|θ′)

Np(x1:N |θ′)

The constraint σ2
> 0 is automatically met since all the terms in the expression on the

right hand side are positive.

Estimating p Setting the gradient of T2 with respect to p to zero yields

p =

N

∑
k=2

∑
i=j

p(x1:N, Sk−1 = i, Sk = j|θ′)

(N − 1)p(x1:N |θ′)
.

The constraint 0 < p < 1 is automatically met since all the quantities in the expression

on the right hand side of this equation are positive and

∑
i=j

p(x1:N, Sk−1 = i, Sk = j|θ′) ≤∑
i,j

p(x1:N, Sk−1 = i, Sk = j|θ′) = p(x1:N |θ′).



164

C.2 Convergence of MAPSlope-FastTrellis

C.2.1 Proof of Theorem 4.2

It suffices to prove the two inequalities for log p(x1:N, s1:N |θ) because log is mono-

tonic increasing. The first inequality follows from the fact that FastTrellis solves the

maximization problem

s∗1:N = arg maxs1:N
log p(x1:N, s1:N |θ).

The second inequality can be obtained maximizing log p(x1:N, s∗1:N |θ) as a function of θ.

Setting the derivative with respect to σ to zero yields,

−N

σ
+

1

σ3

N

∑
i=1

(
xi −

i

∑
j=1

s∗j

)2

= 0

which gives

σ2 =
1

N

N

∑
i=1

(
xi −

i

∑
j=1

s∗j

)2

.

Also note that the second derivative with respect to σ is negative implying that this is in

fact a maximum.

Next, setting the derivative with respect to p to zero yields,

∑
k: sk=sk−1, 2≤k≤N

1

p
= ∑

k: sk 6=sk−1, 2≤k≤N

1

1− p

which gives

p =
1

N − 1

N

∑
k=2

1{0}(s
∗
k − s∗k−1).
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Again, note that the second derivative with respect to p is negative which implies that

this is a maximizer. �

C.2.2 Proof of Corollary 4.3

Assuming there exists δ > 0 such that σ ≥ δ, the following upper bound is obtained:

log p(x1:N, s1:N |θ) ≤ −
N

2
log(2πδ2) + (N−1)max

(
log p, log

1−p

M−1

)

for all s1:N and θ. Since every bounded non-decreasing sequence has a limit point by the

monotone convergence theorem [185, Theorem 3.14], it follows from Theorem 4.2 that

the alternating maximization iterations must converge. �

C.3 Least-squares Minimization Problem in (5.1)

We want to minimize ||Ax− b||2 + η||Bx||2 by choice of x.

||Ax− b||2 = (Ax− b)T(Ax− b) + η(Bx)T(Bx)

= xT(ATA + ηBTB)x− 2bTAv + bTb.

Setting the derivative with respect to x to zero, yields:

2(ATA + ηBTB)x− 2ATb = 0

implying that

x = (ATA + ηBTB)−1ATb.
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C.4 A Sampling Theorem for the Sheaf Geometry

For the sheaf geometry, it is natural to express the shear wave velocity values as a

function of cylindrical coordinates (ρ, ϕ, z) with the needle coinciding with the z-axis.

While the sampling in ρ and z directions are controlled by the sampling resolution of

the ultrasound elastogram, the sampling in the angular ϕ direction is controlled by the

number of planes in the sheaf chosen for scanning. The conditions under which exact

reconstruction is possible (at least in theory) can be stated using Shannon’s sampling

theorem extended to 3D in cylindrical coordinates. Such results have been previously

reported for 2D [186, 187, 188].

Theorem C.1 (Sheaf Sampling Theorem) Let x : R+ × [0, 2π)×R → R be a function

defined using a cylindrical co-ordinate system on three dimensional euclidean space.

The function values are sampled at equally spaced points over a cylindrical volume using

an equiangular sheaf of planes. The cylinder has diameter 2R and depth D. Let x(ρ, ϕ, z)

be the value of this function at a point (ρ, ϕ, z), ρ ≥ 0, ϕ ∈ [0, 2π) and −∞ < z < ∞. Let

f(ϕ,z)(ρ) = x(ρ, ϕ, z) for ϕ, z fixed and similarly define g(ρ,z)(ϕ) and h(ρ,ϕ)(z). Also, let

L2(A) denote the class of functions defined on the domain A that are square integrable.

(A1) For every (ϕ, z), f(ϕ,z)(ρ) ∈ L2, is bandlimited to Wρ and the radial sampling rate

Fρ > 2Wρ.

(A2) For every (ρ, ϕ), h(ρ,ϕ)(z) ∈ L2, is bandlimited to Bz and the height sampling rate

Fz > 2Wz.

(A3) For every (ρ, z), g(ρ,z)(ϕ) ∈ L2 and the Fourier series of its 2π-periodic extension is

limited to ±N terms.
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If (A1)–(A3) hold then x can be reconstructed from its samples using an interpolation

formula:

x(ρ, ϕ, z) =
∞

∑
k=−∞

N

∑
r=−N

∞

∑
l=−∞

x

(
k

Fρ
,

2πr

2N + 1
,

l

Fz

)
sinc(Fρρ− k)

×sin(N + 1
2)(φ− 2πr

2N+1)

sin( ϕ
2 − 2πr

2(2N+1)
)

sinc(Fzz− l). [C.2]

A detailed proof adapted from ideas in [189] is shown below.

Proof: For fixed ρ and z, if g(ρ,z)(ϕ) is in L2[0, 2π), its 2π-periodic extension can be

expanded as a Fourier series:

g(ρ,z)(ϕ) =
∞

∑
n=−∞

dn(ρ, z)ejnϕ

where j =
√
−1. By assumption (A3), this sum can be truncated to |n| ≤ N so that

g(ρ,z)(ϕ) =
N

∑
n=−N

dn(ρ, z)ejnϕ. [C.3]

Define a 2N + 1 dimensional complex valued vector d = (d−N , · · · , dN). Each component

of this vector is a function of (ρ, z). Let ω = ej2π/(2N+1) be the complex (2N + 1)th root of

unity and define er = (ω−rN , · · · , ωrN). The set of vectors {er}N
r=−N forms an orthogonal

basis for R
2N+1 and hence d can be expanded as:

d =
1

2N + 1

N

∑
r=−N

〈d, er〉er

=
1

2N + 1

N

∑
r=−N

N

∑
l=−N

dlω
−lrer
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=
1

2N + 1

N

∑
r=−N

N

∑
l=−N

dle
−j 2πlr

2N+1 er

=
1

2N + 1

N

∑
r=−N

g(ρ,z)

( −2πr

2N + 1

)
er.

Here 〈·, ·〉 denotes the inner product. The nth component of d can be expressed as:

dn(ρ, z) =
1

2N + 1

N

∑
r=−N

g(ρ,z)

( −2πr

2N + 1

)
ej 2πn

2N+1 r.

Substituting this into (C.3) yields,

g(ρ,z)(ϕ) =
N

∑
n=N

1

2N + 1

N

∑
r=−N

g(ρ,z)

( −2πr

2N + 1

)
ej 2πn

2N+1 rejnϕ

=
1

2N + 1

N

∑
r=−N

x

(
ρ,
−2πr

2N + 1
, z

)
sin(N + 1

2)(ϕ− 2πr
2N+1)

sin
(

ϕ
2 + 2πr

2(2N+1)

) . [C.4]

For each fixed r ∈ {−N, · · · , N}, x
(
ρ, −2πr

2N+1 , z
)

is bandlimited both as a function of

ρ and z by assumptions (A1) and (A2). Let X be the 2D Fourier transform of x as a

function of ρ and z. Then,

x

(
ρ,
−2πr

2N + 1
, z

)
=
∫ Wρ

−Wρ

∫ Wz

−Wz

X(η, ξ) ej2π(ρη+zξ) dη dξ.

Since Fρ > 2Wρ and Fz > 2Wz, X (·, ·) ∈ L2([− Fρ

2 ,
Fρ

2 ]× [− Fz
2 , Fz

2 ]), and it can be expanded

as a 2D Fourier series:

X(η, ξ) =
∞

∑
k=−∞

∞

∑
l=−∞

ckl e
−j2π

(
kη
Fρ
+ lξ

Fz

)
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where ckl =
1

FρFz
x
(

k
Fρ

, −2πr
2N+1 , l

Fz

)
. Define the partial sums

Xm(η, ξ) =
m

∑
k=−m

m

∑
l=−m

ckl e
−j2π

(
kη
Fρ
+ lξ

Fz

)

and note that lim
m→∞

Xm = X in L2. Then,

x

(
ρ,
−2πr

2N + 1
, z

)
= 〈X(η, ξ), e−j2π(ρη+zξ)〉

= lim
m→∞
〈Xm(η, ξ), e−j2π(ρη+zξ)〉

= lim
m→∞

∫ Fρ
2

− Fρ
2

∫ Fz
2

− Fz
2

m

∑
k=−m

m

∑
l=−m

ckle
−j2π

(
kη
Fρ
+ lξ

Fz

)

e−j2π(ρη+zξ)dηdξ

= ∑
k

∑
l

1

FρFz
x

(
k

Fρ
,
−2πr

2N + 1
,

l

Fz

) ∫ Fρ
2

− Fρ
2

∫ Fz
2

− Fz
2

e
j2π(η(ρ− k

Fρ
)+ξ(z− l

Fz
))

dηdξ

= ∑
k

∑
l

x

(
k

Fρ
,
−2πr

2N + 1
,

l

Fz

)
sinc(Fρρ− k)sinc(Fzz− l) [C.5]

Substituting (C.5) in (C.4) gives the interpolation formula (C.2) which completes the

proof.

�

Remark C.2 (Application) In the special case of data acquired in an ultrasound scan,

the sampling rate conditions can be interpreted in terms of elastogram resolution. Let L

be the lateral width of the transducer, D be the imaging depth and K be the number of

planes imaged in an equiangular sheaf. Then conditions (A1)–(A3) require each plane

to be sampled over a grid of size at least 2WρL × 2WzD and number of angular slices

K ≥ N.
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Remark C.3 The following theorem is stated in more generality and applies to mea-

surements such as strain, shear wave velocity, stiffness modulus, or TTP that may be

measured in 3D over a subset of a sheaf.

C.5 Proof of Theorem 6.2

Define the space H0 = { f ∈ HR : f = ∑
n
i=1 aiR(t, ti)}. Clearly H0 is a subspace of

HR and one can write HR = H0 ⊕H1, where H1 consists of all the functions that are

orthogonal to the functions in the subspace H0. So, any g ∈ HR can be represented as

g = g0 + g1 such that ||g0 + g1||2HR
= ||g0||2HR

+ ||g1||2HR
. Moreover g(ti) = g0(ti) because

point evaluation at ti is equivalent to an inner product operation with the reproducing

kernel R(·, ti) ∈ H0. This implies that

1

n

n

∑
i=1

(ui − g(ti))
2 + λ||g||2HR

=
1

n

n

∑
i=1

(ui − g0(ti))
2 + λ(||g0||2HR

+ ||g1||2HR
)

≥ 1

n

n

∑
i=1

(ui − g0(ti))
2 + λ||g0||2HR

so that the solution must lie in H0. The solution is unique because the objective function

in (6.1) is convex and coercive. �

C.6 Proof of Theorem 6.4

By definition of the gamma function,

Γ(ν + 1) =
∫ ∞

0
uνe−u du
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where, substituting u = t(1/r2 + ω2
1 + ω2

2) and rearrangement yields:

(1/r2 + ω2
1 + ω2

2)
−ν−1 =

1

Γ(ν + 1)

∫ ∞

0
tνe−t(1/r2+ω2

1+ω2
2) dt. [C.6]

The inverse 2D Fourier transform is given by

1

(2π)2

∫

R2

ej(ω1x1+ω2x2)

(1/r2 + ω2
1 + ω2

2)
ν+1

dω1 dω2 [C.7]

=
1

(2π)2Γ(ν + 1)

∫ ∞

t=0
tνe
− t

r2

∫

R2
e−t(ω2

1+ω2
2)ej(ω1x1+ω2x2) dω1 dω2 dt [C.8]

=
1

(2π)2Γ(ν + 1)

∫ ∞

t=0
tνe
− t

r2−
x2

1+x2
2

4t

∫

R2
e−t((ω1−j

x1
2t )

2+(ω2−j
x2
2t )

2)dω1dω2dt [C.9]

=
1

4πΓ(ν + 1)

∫ ∞

t=0
tν−1e

− t
r2−

x2
1+x2

2
4t dt [C.10]

=
1

2πΓ(ν + 1)

∫ ∞

0
2




√
x2

1 + x2
2

2/r




ν

cosh(uν)e−
1
r

√
x2

1+x2
2 cosh(u) du [C.11]

=
1

2ν+1πΓ(ν + 1)r−2ν




√
x2

1 + x2
2

r




ν

Kν




√
x2

1 + x2
2

r


 [C.12]

=
Γ(ν + 1

2)

4π3/2Γ(ν + 1)
R(||(x1, x2)− (0, 0)||) [C.13]

where (C.8) is obtained by substituting (C.6) in (C.7); (C.10) follows from the fact that

the inner integral is the integral of a 2D Gaussian function which evaluates to π/t; (C.11)

is obtained by substituting t = 1
2re−u

√
x2

1 + x2
2 and using the fact that cosh(u) is an even

function; and (C.12) follows from the definition of the modified Bessel function of the

second kind [159, Sec. 9.6.24, pp. 376]. Finally, (C.13) follows from the definition of R(·)
in (6.2).
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C.7 Proof of Corollary 6.6

Fix any (ν, r) ∈ S1 × S2. Then from Theorem 6.5 as n ↑ ∞, Iν,r(n) ↓ 1 where the

dependence of the inefficiency function on ν and r is explicitly shown. Since Rν,r is the

reproducing kernel forW1/r
(ν+1),2

, solving the optimization problem (6.1) produces a func-

tion f ∈ W1/r
(ν+1),2

. Repeating this process for all (ν, r) pairs it follows from Theorem 6.5

that Iν,r(n) ↓ 1 with f ∈ ⋃ν,rW1/r
(ν+1),2

.

C.8 Proof of Theorem 7.1

The iteration in (7.2) can be represented by a function f : R
N → R

N defined as:

f (u) =
1

1 + 4λ
(

1
∆x4 +

1
∆y4 +

1
∆z4

)d + Au.

Let || · || denote the 2-norm for vectors and the induced spectral 2-norm for matrices.

Note that any row of A contains at most six non-zero elements with elements amn defined

in (7.3). By the Perron-Frobenius theorem [190], a bound on the largest eigenvalue of A,

and hence on ||A|| can be obtained as follows:

||A|| ≤ max
m

∑
n

amn

≤ 4λ/∆x4

1 + 4λ
(

1
∆x4 +

1
∆y4 +

1
∆z4

)

+
4λ/∆y4

1 + 4λ
(

1
∆x4 +

1
∆y4 +

1
∆z4

)

+
4λ/∆z4

1 + 4λ
(

1
∆x4 +

1
∆y4 +

1
∆z4

)

=
4λ′

1 + 4λ′
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< 1

where λ′ = λ
(

1
∆x4 +

1
∆y4 +

1
∆z4

)
.

Therefore,

|| f (u)− f(v)|| = ||A(u− v)||

≤ ||A|| ||u− v||

< ||u− v||,

where the last step follows from the fact that ||A|| < 1. Accordingly, f is a contraction

map and by the Banach fixed point theorem [185] the sequence of iterates must converge

to a limit point.
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D

Other Applications

This appendix presents some applications of the MAPSlope-FastTrellis algorithm

to data from political science and finance to demonstrate the practical utility of this

procedure as a general purpose signal processing algorithm.

D.1 Presidential Approval Ratings

United States presidential job approval ratings have been published by various agen-

cies over the years. These ratings are usually quoted as percentage values that are com-

puted from the results of opinion polls administered to a sample of the country’s pop-

ulation. An analysis of the approval ratings for President George W. Bush is presented

by Ratkovic and Eng [73]. The result of applying the MAPSlope algorithm to a snippet

from the same dataset is shown in Fig. D.1. A sudden transition in the dataset correlates

with the 9/11 terrorist attack.

The raw data is assumed to be piecewise constant, which implies that the running-

sum over this plot gives a piecewise linear curve. This noisy piecewise linear data can be

interpreted as a “cumulative approval score” plotted as a function of time. For compar-

ison, results from fitting a fourth order polynomial and a 3-point 1st order polynomial

LOWESS filter [72] are also shown in Fig. D.1. Observe that close to the breakpoint the
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Table D.1: Numerical evaluation of MAPSlope for Bush’s approval ratings

Polynomial Lowess FastTrellis Smooth Optimization

Squared residual 37.61 7.8 5.13 9.84

Average # breaks - - 4 3.63

Residual sum squared values are calculated with respect to the raw data. Note
that the average number of breakpoints is similar for both the FastTrellis and
smooth optimization methods but the residual is smaller with the former. The
polynomial fit is of order 4, whereas the LOWESS smoother uses a sliding win-
dow of 3 samples.

absolute residual error from the MAPSlope algorithm is the lowest. Also, MAPSlope-

FastTrellis detects a change point immediately following the 9/9–11 polling period.

A similar result is obtained in [73] using a non-parametric segmented spline fitting

method. Additional numerical evaluation is presented in Table D.1. MAPSlope was

run 1000 times with different initial guesses for the parameter values; σ2 was drawn

from U ([0.05, 0.15]) and p was drawn randomly from U ([0.88, 0.93]) A maximum limit

of 6 alternating maximization iterations was used with M = 15 slope quantization levels.

The smooth optimization algorithm was run with α = 10−3. Since there is no “ground

truth” answer to the fitting problem in this application, a judgment is made using the

residual squared error from the data. MAPSlope with the trellis dynamic program gives

the lowest error as seen from Table D.1.

D.2 Interest Rates

Markov switching models have been used in the past to unravel piecewise constant

trends in interest rate datasets. Hamilton [191] uses a 2-state Markov chain to model an

economy that switches between fast and slow growth cycles. As an extension, Garcia

and Perron [192] use a 3-state Markov switching model to analyze inflation adjusted

quarterly interest rate data for the United States between 1961 to 1986. Assuming that
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Figure D.1: Fits to Presidential approval data for President George W. Bush around
9/11. Absolute residuals obtained from MAPSlope-FastTrellis (solid line), a 4th order
polynomial fit (dashed line) and a 3-point 1st order LOWESS fit (dash-dotted line) are
also shown. Observe that the 4th order polynomial fit has a large error at the breakpoint.
The 3-point LOWESS smoother performs slightly better than the näive polynomial fit,
but still fails to capture the sharp jump.

this data follows a first-order Markov property, the MAPSlope algorithm provides an

easy generalization while providing a tractable algorithm for a moderate number of

quantized interest rate levels.

The result of applying the MAPSlope algorithm to the dataset presented in [74] is

shown in Fig. D.2. As in [74], it is assumed that this data is piecewise constant, with

occasional changes in interest rate. The raw data is integrated to obtain a cumulative

interest rate plot as a function of time. This plot is assumed to be piecewise linear and
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MAP estimates of the slope values are obtained. Initial parameter values are guessed

from data; p is chosen close to 0.97 with the anticipation of around three regimes in

the raw data vector of length 100, whereas the initial σ2 is estimated from the sample

variance after appropriate detrending. The slope values are quantized to 15 levels (which

gives a resolution of about 0.067 on the unit interval).

Table D.2: Numerical evaluation of MAPSlope for the interest rate data

Bai-Perron FastTrellis Smooth Optimization

MSE (Eq. (4.21)) 0 0.64 1.59

Squared residual 4.32 4.74 5.37

Average # breaks 3 3 6.98

The MSE values are obtained according to (4.21) by using the Bai-
Perron fit as the ground truth. Residual sum squared values are cal-
culated with respect to the raw data. Note that the average number of
breakpoints is quite high in the smooth optimization method because
the quantization step often leads to a sequence of small jumps.

Fig. D.2 also shows results obtained from the Bai-Perron algorithm [193] for com-

parison. The output of MAPSlope-FastTrellis agrees quite well with the Bai-Perron

method as seen from the plot of absolute difference. Additional numerical evaluation

results are shown in Table D.2. Both FastTrellis and smooth optimization algorithms

were simulated 1000 times with different initial guesses for (σ2, p) with σ2 drawn ran-

domly from U ([0.2, 2]) and p drawn from U ([0.90, 0.98]). A maximum iteration limit of

MAXIT = 6 was used. For the smooth optimization algorithm, a sequential quadratic

program [128] was used, followed by quantization to the discrete set of slopes. An ini-

tial guess of 0.5 was used for all the N slopes. The smooth optimization algorithm was

run with α = 10−3. It was seen that MAPSlope converged to a local stationary point

(σ2, p) = (0.12, 0.97) in 3–4 iterations when using FastTrellis but did not converge to
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a stable parameter value when the smooth optimization method was used. This is be-

cause the latter is not guaranteed to produce the optimal slope sequence, causing the

hypotheses of Theorem 4.2 to be violated.
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Figure D.2: Piecewise constant estimates of quarterly interest rates, data obtained from
the paper by Bai and Perron [74]. The MAPSlope-FastTrellis fit was obtained using
(σ2, p) = (0.12, 0.97) which was found to be a local convergence point of the alternating
maximization scheme.
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