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Abstract

This paper discusses the development of a slope estimation algorithm called

MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The

number and locations of slope change points (also known as breakpoints) are

assumed to be unknown a priori though it is assumed that the possible range

of slope values lies within known bounds. A stochastic hidden Markov model

that is general enough to encompass real world sources of piecewise linear data

is used to model the transitions between slope values and the problem of slope

estimation is addressed using a Bayesian maximum a posteriori approach. The

set of possible slope values is discretized, enabling the design of a dynamic pro-

gramming algorithm for posterior density maximization. Numerical simulations

are used to justify choice of a reasonable number of quantization levels and also

to analyze mean squared error performance of the proposed algorithm. An al-

ternating maximization algorithm is proposed for estimation of unknown model

parameters and a convergence result for the method is provided. Finally, results

using data from political science, finance and medical imaging applications are
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presented to demonstrate the practical utility of this procedure.

Keywords: piecewise linear function, MAP estimation, dynamic programming

optimization, EM algorithm, alternating maximization

1. Introduction

The need for piecewise linear regression arises in many different fields, as

diverse as biology, geology, and the social sciences. This paper addresses the

problem of direct estimation of slopes from piecewise linear data. An impor-

tant application of interest for this paper is ultrasound shear wave elastography,5

where ultrasonic echoes are used to track the motion of an externally generated

mechanical shear wave pulse traveling through multiple tissue interfaces [19].

The time of arrival of this shear wave pulse is recorded as a function of spatial

coordinates in the ultrasound imaging plane and the reciprocal of the slope of

this function gives an estimate of the speed of the wave. Breakpoints (where10

the slope changes) indicate tissue interfaces. These estimates are useful from a

clinical perspective because they provide a way to quantify mechanical proper-

ties of tissue, thereby adding value to subjective judgments about the location

and size of cancerous tumors.

A similar issue in larger spatial dimensions occurs in seismology where the15

time of arrival of seismic waves is tracked at different locations relative to the

epicenter of an earthquake. The velocity of these waves provides information

about the mechanical properties of the geological medium. Piecewise linear data

also occurs in the study of flow of soil through water streams and is referred to

as bedload data [20].20

1.1. Data Model

Assume that the piecewise linear data is generated by the following discrete

time hidden Markov model (HMM). The underlying (unknown) function takes
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on values Zn at each discrete index 1 ≤ n ≤ N . This function value is obtained

by accumulating slope values Sk up to the time index n. Zero mean Gaussian25

noise with variance σ2 is added to each running sum resulting in the observed

function value Xn. Also, suppose that for any n, the probability of maintaining

the previous slope value is p and the probability of transitioning into a new

slope value is 1− p. These relations can be written mathematically as follows:

Z0 = 0 with probability 1,

Zn = Zn−1 + Sn, (1)

Xn = Zn + wn

for n = 1, . . . , N where wn
iid
∼ N(0, σ2). A Markov structure is imposed on the

slope values as follows:

Sn =





Sn−1 with probability p

Un with probability 1− p

for n = 2, . . . , N where Un ∼ U({0,
1

(M−1) , . . . ,
M−2
M−1 , 1} \ {Sn−1}) denotes a dis-30

crete uniform random variable taking on one of M − 1 possible slope values and

the initial slope value is drawn uniformly as S1 ∼ U({0,
1

(M−1) , . . . ,
M−2
M−1 , 1}).

Another implicit assumption is that the slopes can take on values on a closed

bounded interval [sl, su] with upper and lower limits 0 < sl < su < ∞ known

a priori. For instance, in the ultrasound-based wave tracking application, the35

values of sl and su can be obtained from the underlying physics which dictates

that such mechanical waves travel with speeds between 0.5 to 10 m/s in homo-

geneous tissue. With the knowledge of sl and su, the given data vector can be

translated and rescaled so that all slope values lie in the interval [0, 1]. Hence,

without loss of generality, it suffices to design a slope estimation algorithm that40
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operates with a finite set of slopes S = {0, 1
(M−1) , . . . ,

M−2
M−1 , 1}. Intuitively, this

quantization step is justified because in the presence of noise it is impossible to

detect the difference between slope values that differ only slightly.

1.2. Main Contributions

The main contributions of this paper are as follows:45

(a) a hidden Markov model formulation of the slope estimation problem that

is general enough to encompass different applications

(b) a procedure for MAP estimation of slopes from this Markov model

(c) a dynamic programming routine on a linearly growing trellis for fast MAP

estimation50

(d) an MSE optimality analysis of this routine via simulations and a compar-

ison with reasonable upper and lower bounds

(e) an alternating maximization algorithm that alternately maximizes an ob-

jective function with respect to the unknown sequence of slope values and

unknown model parameters to jointly estimate both of them from data55

(f) a comparison of the performance of this algorithm with other methods in

literature applied to real world data.

1.3. Related Work

In many real world applications, the local slope values of an observed noisy

function have interesting physical interpretations. Most of the existing methods60

do not directly address slope estimation; rather, they attempt to fit a model

to the data. For instance, standard regression or spline-based methods can be

used to fit a smooth function to the data and local slopes can be estimated from

this fit. However, even if the function-fitting algorithm generates optimal fits
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(according to a cost function such as the minimum MSE), there is no guarantee65

that the local slope estimates obtained from this fit are themselves optimal.

This paper bypasses the need for such post-processing by directly estimating the

slopes and breakpoints. This is particularly useful when the slopes correspond

directly to the variables of interest and the breakpoints correspond to where

those variables change.70

The topic of slope estimation from noisy data is quite old; an early paper

can be traced back to 1964 where the popular Savitzky-Golay differentiator [10]

was introduced. Their main idea is to use a locally windowed least squares fit

to estimate the slope at each data sample, where the window coefficients are

chosen to satisfy a certain frequency response that mimics a high pass filter75

together with some level of noise averaging. Another similar technique that is

used in statistics is called locally weighted least squares regression (LOWESS)

[23]. However, these methods undesirably smooth out the breakpoint locations

in when data has sharp transitions or jumps. In contrast, the algorithm in the

present paper prevents blurring the transitions by explicitly allowing for sharp80

slope transitions using a Markov model.

In some situations, the raw data can be massaged using a preprocessing

step so that it becomes piecewise linear. The simplest example is the case

of piecewise constant data — the running sum (integral) of such data yields

a piecewise linear function. Ratkovic and Eng [22] discuss a statistical spline85

fitting approach combined with the Bayesian information criterion (BIC) to

detect abrupt transitions in political approval ratings. Data from their paper is

used in Section 6.1. As a special case, their method can be applied when function

values stay almost constant over long intervals and occasionally shift to a new

value. In another application, Bai and Perron [16] use statistical regression90

techniques to detect multiple regime shifts in interest rate data. The algorithm
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developed in the present paper provides comparable numerical performance as

the Bai-Perron algorithm as shown in Section 6.2.

Closely related problems of piecewise linear regression for noisy data have

been addressed over the years. For example, an early paper by Hudson [1]95

focuses on a technique to obtain piecewise linear fits in a least-squares sense

with only two segments. The break point location is included as a parameter

in the least squares optimization problem. The method is extended by deal-

ing with multiple breakpoint locations on a case-by-case basis which becomes

combinatorially intractable as the number of breakpoints increases. Bellman100

[2] suggests a dynamic programming approach when the number of breakpoints

is unknown. However, this method requires the use of a large number of grid

points for accurate results. Gallant and Fuller [3] generalize this to the fitting of

arbitrary polynomials with unknown breakpoints while requiring the function to

be composed of segments with continuous first derivatives. They apply a nonlin-105

ear optimization routine (Gauss-Newton minimization) to fine-tune breakpoint

locations while minimizing the squared error relative to the data. Another

non-parametric approach involves use of edge preserving penalized optimiza-

tion such as total variation minimization [4]. Denison et al. [5] use a Markov

chain Monte Carlo approach to fit piecewise polynomials with different numbers110

and locations of knot points. Tishler and Frey [6] discuss a maximum likelihood

approach to fit a convex piecewise linear function expressed as a point-wise max-

imum of a collection of affine functions with unknown coefficients. Maximum

likelihood estimates are obtained by running a constrained optimization routine

for a smoothed approximation of a mean squared error (MSE) cost function115

to bypass non-differentiability issues. A similar data model coupled with data

clustering heuristics is utilized in a more recent paper by Magnani and Boyd [7]

on fitting convex piecewise linear functions.
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The use of adaptive methods is an attractive way of handling the issue of

unknown number of breakpoints. One of the first algorithms using this tech-120

nique was proposed by Friedman [8] under the name “adaptive regression splines

(ARES).” Recursive partitioning is used to obtain better partitions of the set

of data points at each iteration. Either goodness of fit criteria or generalized

cross validation is used to estimate the number of partitions. On similar lines,

Kolaczyk and Nowak [9] apply the method of recursive dyadic partitioning and125

fit a smooth function in each partition using maximum likelihood estimation.

A penalty term for the number of partitions is introduced to trade off model

complexity and quality of fit. In recent work, Saucier and Audet [11] propose

a different class of adaptively constructed basis functions that can capture the

transition points in otherwise piecewise smooth functions.130

In [15] Bai and Perron discuss the problem of detecting structural changes

in data without requiring the estimated function to be piecewise linear or even

continuous. Their related paper [16] discusses a dynamic programming approach

to obtain a least sum of squares fit. The model order is determined by using

the Akaike information criterion (AIC) [18] and they impose a minimum limit135

on the “run length” of each segment in the piecewise model. In contrast, the

present paper proposes a dynamic program that generates optimum maximum

a posteriori (MAP) estimates based on a stochastic finite state HMM.

In the signal processing literature, two kinds of paradigms have been applied

to this problem — Bayesian estimation and pattern recognition approaches.140

Punskaya et al. [24] model the function using the number and locations of the

breakpoints as free parameters with certain prior distributions. The posterior

density of the parameters conditioned on the noisy data is estimated through

Monte Carlo techniques. In response to this method, Fearnhead [25] proposes

a direct method for estimating parameters of the same model without resorting145
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to Monte Carlo simulations and exploiting a Markov property in the model that

allows calculation of the probability of future data points conditioned on the

most recent breakpoint location. In the present paper, a Markov structure is

imposed on the underlying slope values that are chosen from a finite set and the

MAP algorithm estimates these slopes at each data sample.150

1.4. Organization and Notation

The rest of this paper is organized as follows. The problem statement is

discussed further in Section 2. A computationally tractable algorithm that uses

the principle of dynamic programming is presented in Section 3. The issue of

automatic selection of model parameters from data is addressed in Section 4.155

The problem of choosing the right number of quantization levels is analyzed

through simulations and MSE distortion bounds in Section 5. A series of diverse

applications are presented in Section 6, followed by some closing remarks in

Section 7.

The notation vi:j is hereafter used to denote a vector (vi, vi+1, . . . , vj) and160

the model parameters are denoted by θ = (σ2, p).

2. Problem Statement and Stochastic Formulation

A pictorial representation of the relationships between various random vari-

ables of the piecewise linear data model for this paper is shown in Fig. B.1. It

can be seen that these relationships lead to an HMM with two hidden layers.165

Moreover, the cardinality of the state space of each of the random variables

Zn increases with n. The next two subsections show why standard inference

and parameter learning algorithms for HMMs cannot be directly applied to this

problem.
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2.1. Inference170

The probabilistic structure of the data generation process can be expressed

using a conditional density function of the unknown function values conditioned

on the observed data vector. Let pZ0:N |X1:N ,θ(Z0:N = z0:N |X1:N = x1:N , θ) be

the posterior probability density of the function values z0:N conditioned on the

observed data points x1:N . The goal of the inference problem is to unravel175

the most likely sequence of hidden states (slope values s1:N ) that produced the

observed function values x1:N . This can be posed as a MAP estimation problem

where the posterior density of the unknown states conditioned on the observed

data is maximized.

Proposition 1. The states Zn in the HMM described by (1) form a second-180

order Markov chain.

Proof. Using (1), it is easy to switch between the random variable Zn

and Sn by invoking the recursive relationship Zn = Zn−1 + Sn. The first two

states are handled as special cases. Note that p(Z0 = z0) := 1 for z0 ≡ 0, and

p(Z1 = z1|Z0 = z0) = p(S1 = z1) = 1/M for z1 ∈ S and 0 otherwise. Also,185

p(Z2 = z2|Z1 = z1, Z0 = z0) = p(S1 + S2 = z2|S1 = s1)

= p(S2=z2−z1|S1=z1−0)

= p(S2=z2−z1|S1=z1−z0)

which depends only on z2, z1 and z0, since Z0 = 0 with probability 1. In general,
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for 3 ≤ n ≤ N ,

p(Zn = zn|Z0:n−1 = z0:n−1) = p(Zn−1 + Sn = zn|Z0:n−1 = z0:n−1)

= p(zn−1+Sn=zn|Z0:n−1=z0:n−1, Zn−1−Zn−2=zn−1−zn−2)

= p(Sn=zn−zn−1|Z0:n−1=z0:n−1, Sn−1=zn−1−zn−2)

= p(Sn = zn − zn−1|Sn−1 = zn−1 − zn−2)

which only depends on zn, zn−1 and zn−2. Hence Zn is a second-order Markov

chain. The transition probabilities can be written explicitly as:

p(Zn=zn|Zn−1=zn−1, Zn−2=zn−2) =





p for zn=2zn−1−zn−2

0 for zn < zn−1 (2)

1− p

M − 1
otherwise

for 3 ≤ n ≤ N .

The posterior density can be further simplified using Proposition 1 and190

Bayes’ theorem as follows:

p(z0:N |x1:N , θ) =
p(x1:N |z0:N , θ)p(z0:N |θ)

p(x1:N |θ)

=
p(x1|z1, θ)p(z1|z0, θ)

p(x1:N |θ)

N∏

j=2

[
p(xj |zj ,θ)·p(zj|zj−1,zj−2,θ)

]
.(3)

For MAP estimation, it convenient to work with the log posterior density

derived using (2) and (3):

log p(z0:N |x1:N , θ) = − log p(x1:N |θ)−
N

2
log(2πσ2)−

1

2σ2

N∑

n=1

(xn − zn)
2

+

N∑

n=2

log

[
p χ{0}(sn−sn−1)+

1−p

M−1
χc
{0}(sn−sn−1)

]
.(4)
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where χA(t) is the indicator function for the set A. It is defined as χA(t) = 0

when t /∈ A and χA(t) = 1 when t ∈ A. Also, χc
A(t) := 1− χA(t).195

In a standard HMM, this maximization problem is efficiently solved using

a dynamic program called the Viterbi algorithm [12]. For the present model,

the standard Viterbi approach cannot be applied because of the second-order

transition structure coupled with the fact that the state space of the hidden state

Zn changes with n. Two algorithms to solve the MAP estimation problem for200

the present model are shown in Section 3, including a computationally tractable

dynamic program discussed in Section 3.1.

[Figure 1 about here.]

2.2. Learning

Choosing the model parameters σ2 and p is crucial to ensure a sensible fit205

to the noisy data and enable numerical evaluation of the log posterior proba-

bilities. Unfortunately, these parameters that define the stochastic model are

seldom known in advance. Although reasonable values can be guessed by man-

ually preprocessing the data, an automatic method for choosing these param-

eter values is desirable. The Baum-Welch algorithm which is a special case of210

expectation-maximization (EM) algorithm is a standard method for parameter

estimation [28, 29, 30] in HMMs. In general, it is difficult to prove that the EM

procedure converges unless certain assumptions about the likelihood function

are made, unimodality being a common assumption [33]. Other approaches in-

clude approximate EM iterations via Monte Carlo integration to approximate215

the expectation step [32].

For the present model, it is theoretically possible to perform iterative esti-
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mation of new parameter values θ from the old values θ′ using EM:

σ2 =

N∑
n=1

∑
s1:n∈Sn

(
xn −

∑n
j=1 sj

)2

p(x1:N , s1:n|θ
′)

Np(x1:N |θ′)

and

p =

N∑
n=2

∑
i=j

p(x1:N , Sn−1 = i, Sn = j|θ′)

(N − 1)p(x1:N |θ′)
.

A derivation can be found in Appendix A. Although it is easy to set up the

EM iteration equations, observe that the inner summations in both equations

run over slope sequences whose lengths grow exponentially in the cardinality of

the set S making it intractable for larger values of M and N .220

An alternating maximization scheme is presented in Section 4 as an alter-

native to EM. Although it has weaker theoretical properties than the standard

EM algorithm, it gives good performance in practice, as will be seen from the

applications of Section 6. Unlike the EM approach, which ascends the observed

data likelihood function, the MAPSlope algorithm ascends the complete data225

likelihood function by alternately maximizing with respect to the slope sequence

and the model parameters.

3. Maximum a Posteriori Estimation of Slope Values

The maximum a posteriori slope sequence can be obtained by maximizing

(4) as a function of the slope sequence, which is equivalent to the following230

optimization problem:

s∗1:N = argmax
s1:N

(
−

1

2σ2

N∑

n=1

(xn − zn)
2 +

N∑

n=2

log

[
p χ{0}(sn − sn−1)

+
1− p

M − 1
χc
{0}(sn − sn−1)

])
. (5)
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The term containing p(x1:N |θ) is dropped because it does not depend on s1:N .

Besides producing the MAP optimal solution, the objective function has certain

intuitively appealing characteristics. The first summation on the right hand side

of (5) is just the sum squared error, which must be minimized. The second sum-235

mation acts like a penalty term that encourages longer runs of constant slope.

In general, MAP estimation problems are non-trivial owing to the presence of

multiple local maximizers and computational complexity associated with op-

timization of multi-variable functions. Fortunately, the present maximization

problem can be handled efficiently by taking a piecemeal approach furnished by240

the dynamic programming principle [31]. The following algorithm differs from

the standard forward-backward algorithm used with HMMs which only handles

one level of hidden states.

3.1. Dynamic Program

[Figure 2 about here.]245

The objective function in (5) is a sum of individual terms that depend only

on zn, sn and sn−1. One way of visualizing a maximization algorithm is using

the trellis in Fig. B.2 where each depth n shows the possible values k that the

state Zn can realize. Each branch has an associated branch “reward” which

corresponds to individual terms of the summation in (5). The peculiarity about250

this trellis is that each branch has a variable reward depending on the previous

branch chosen along the optimizing path. A dynamic program called Fast-

Trellis is shown in Fig. B.3. This algorithm works by storing the optimum

path vector Π(n, k) and its associated reward I(n, k) coming into each node k

at every depth n of the trellis. The path that maximizes the partial sums in255

(5) is chosen as the optimal path for each node. For each 1 ≤ n ≤ N , the path

vectors Π(n, k) and cumulative rewards I(n, k) are updated by appending new

nodes to the optimal paths terminating at nodes at the previous depth n− 1.
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Note that the branch rewards referred to in the innermost loop of Fast-

Trellis are composed of two terms: the first term is the negative squared260

error with respect to the data and the second term is an additional reward for

maintaining the same slope value as the previous data sample. The final output

of this algorithm contains the best path reaching the deepest level in the trellis

and the value of the maximized sum shown in (5). Referring back to Proposi-

tion 1, it is also worth noting that the pseudocode shown in Fig. B.3 implicitly265

converts the second order Markov structure on the Zn process into a first order

Markov process by keeping track of a pair of values, viz., the recent slope value

sn = zn−zn−1 and the previous slope value sn−1 = zn−1−zn−2, when deciding

the branch cost.

It is instructive to compare the computational complexity of this procedure270

vis-á-vis a standard Viterbi algorithm that operates on a constant height trel-

lis. The basic unit of computation is assumed to consist of two floating point

additions, one floating point multiply and one compare — these operations are

needed for calculating the rewards for each branch in the trellis in Fig. B.2.

The terms log p and log
(

1−p
M−1

)
can be precomputed, hence do not enter the275

complexity analysis. The height of the trellis at any depth n is n(M − 1) + 1.

Therefore the worst case number of computations at depth n is of the order

O(n2M2). Summing over a total trellis depth of N levels, the worst case com-

putational complexity of FastTrellis is O(N3M2). Although this is worse

than the O(NM2) complexity [12] of a standard Viterbi algorithm with a con-280

stant trellis height, it is still an improvement over a brute force approach which

will require searching over MN slope value sequences.

[Figure 3 about here.]
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3.2. Smooth Optimization

The indicator functions in (5) cause the objective function to be non-differentiable.

This can be addressed by approximating an indicator using a narrow Gaussian

pulse:

χ{0}(t) ≈ exp

(
−

t2

α2

)

where α controls the width of the roll-off. As αց 0 a narrow spike of height 1285

is obtained at t = 0 thus approximating the indicator function with increasing

precision. After discarding terms that do not depend on s1:N , the following

approximation to the optimization problem in (5) is obtained:

s∗1:N = argmax
s1:N

(
−

1

2σ2

N∑

n=1


xn −

n∑

j=1

sj




2

+

N∑

n=2

log

[
p e−

(sn−sn−1)2

α2 +
1− p

M − 1

(
1− e−

(sn−sn−1)
2

α2

)])
. (6)

This smooth approximation of the original problem can be solved using

standard constrained optimization routines such as gradient descent [26, 27].290

Although it does not guarantee that the slope values lie in the discrete set S,

this issue can be bypassed either by rounding the slopes to the nearest quantiza-

tion bins, or by using integer-programming to solve the optimization problem.

Algorithmic complexity of this method varies based on the optimization algo-

rithm used. In general, for a gradient descent type approach that constructs a295

Hessian matrix of size N×N , the worst case complexity of inverting the Hessian

matrix is O(N3). This is similar to the complexity of the dynamic program-

ming method. It should, however, be noted that FastTrellis produces an

exact solution, whereas there is no guarantee that the optimization method will

converge to s∗1:N ∈ S
N .300
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4. Alternating Maximization Algorithm for Estimating Model Pa-

rameters

The following result provides a useful alternative re-estimation procedure

that bypasses the computational issues with the full EM approach. Yet, it has

a similar advantage as an EM algorithm in that it increases the likelihood at305

each iteration. Under an additional minor technical assumption, it can also be

shown that the procedure converges.

Theorem 2. Let s1:N be the current slope sequence estimate, s∗1:N be the new

sequence estimate obtained by running FastTrellis with the current model

parameter values θ = (σ2, p). Let θ∗ = (σ∗2, p∗) be re-estimated from the new

slope sequence estimate as:

σ∗2 =
1

N

N∑

n=1


xn −

n∑

j=1

s∗j




2

(7)

and

p∗ =
1

N − 1

N−1∑

n=1

χ{0}(s
∗
n+1 − s∗n). (8)

Then the complete data likelihood function satisfies

p(x1:N , s1:N |θ) ≤ p(x1:N , s∗1:N |θ) ≤ p(x1:N , s∗1:N |θ
∗).

A similar idea for estimation of parameters in a generalized linear model can

be found in a recent paper by Yen [17]. The re-estimation equations can be

understood intuitively — the new estimate of σ2 is just the sample variance of310

the residual signal after subtracting the current piecewise linear fit from the raw

data; the new estimate of p is the relative frequency of occurrence of samples

where slope remains unchanged in the current fit. A formal proof is presented

in Appendix B.
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This result suggests an alternating maximization algorithm [34] that iter-315

ates between the slope sequence and the unknown parameters. It guarantees

that the complete data likelihood increases at each step through this iterative

procedure. Note that this is different from the analysis of the EM algorithm

[33, 28] where the observed data likelihood function values are non-decreasing.

The alternating maximization steps can now be iterated until some termination320

criterion is met. In most practical examples this method provides a reasonable

fit in a few iterations. The complete algorithm called MAPSlope is shown in

Fig. B.4.

[Figure 4 about here.]

Assuming there is a lower bound on the noise variance, the following result325

relevant to the convergence of MAPSlope algorithm can be proved:

Corollary 3. In addition to the hypotheses of Theorem 1, suppose there exists

δ > 0 such that σ ≥ δ. Then the sequence of likelihood function values obtained

via alternating maximization iterations of (7) and (8) have a limit point.

In order to make stronger claims about the properties of this limit point,330

further assumptions are required [35] that do not hold in this present scenario.

The re-estimation method may be applied when the smooth optimization

method is used instead of MAPSlope, in which case the complete algorithm

becomes a special case of alternating gradient ascent. However, the aforemen-

tioned convergence result does not apply because the slope sequence obtained335

using the smooth optimization method is only an approximate maximizer.

5. Mean Squared Error Optimality Analysis and Model Order Selec-

tion

The aim of this section is to propose an empirical method for selecting the

right number of quantization levels M for the set of slope values. Simple argu-340

17



ments from source coding theory are used to obtain upper and lower bounds for

the MSE performance of the algorithm. This method can be applied directly to

the sequence of estimated slope values.

Assume that the slope values originate from a continuous amplitude Markov

source with amplitude levels in the interval [0, 1]. The goal is to character-

ize the performance of a decoder that outputs discrete values from the set

{0, 1
(M−1) , . . . ,

M−2
M−1 , 1} such that the MSE is minimized. With a slight abuse of

notation, let Sn denote the true slope value at sample n and let Ŝn be the slope

estimated from noisy data. The MSE performance metric is defined as:

MSE(M) =
1

N

N∑

n=1

(Ŝn − Sn)
2 (9)

where the dependence on M is due to the fact that the algorithm that generates

the sequence Ŝn depends on M . Other metrics such as difference between the345

actual and detected number of change points, and distance from the actual

change points can be used in practice, but are harder to analyze theoretically.

Lower bound for MSE performance. Consider an omniscient decoder (oracle)

that knows the exact slope values output by the source in advance. The MSE

of this decoder can be used to obtain a lower bound on the MSE obtained using350

any decoder. The average error of this omniscient decoder is given by [36]:

εLB(M) =

1
2(M−1)∫

0

x2dx+

M−1∑

n=1

2n+1
2(M−1)∫

2n−1
2(M−1)

(
x−

n

M − 1

)2

dx+

1∫

1− 1
2(M−1)

(x− 1)2dx

=
1

24(M−1)3
+

M−1∑

n=1

1

12(M−1)3
+

1

24(M−1)3

=
1

12(M − 1)2
.
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Upper bound for MSE performance. Consider an ignorant decoder that tries

to minimize the MSE after discarding all input information. The MSE of this

decoder provides an upper bound to the MSE performance. More “intelligent”

decoders that do use the input information when deciding a slope value would355

have a lower MSE than this ignorant decoder. A natural strategy for the igno-

rant decoder is to assume that each input slope value is uniformly and randomly

distributed over [0, 1], and hence the best it can do is to announce a slope value

that is nearest to 1
2 . When M is odd, the decoder has a bin at 1

2 giving an MSE

of 1
12 . If M is even, the nearest bin is always a distance of 1

2(M−1) away from360

1
2 . So, the upper bound on the average error can be written as:

εUB(M) =

∫ 1

0

(
x−

1

2
−

1

2(M − 1)

)2

dx

=
1

12
+

1

4(M − 1)2
when M is odd,

and,

εUB(M) =
1

12
when M is even.

Fig. 5(a) and 5(b) show the MSE through simulation on 1000 randomly

generated piecewise linear datasets each of length N = 50. The lower and

upper bounds (LB and UB) derived above are also plotted. As one would

expect, larger values of MSE are obtained for larger σ2 values. Lower MSE365

values are obtained with larger values of p because the slope changes less often

when p is closer to 1. Note that the true parameter values were provided as

input to the FastTrellis routine during simulation.

[Figure 5 about here.]

Two empirical conclusions can be drawn from these simulation results. First,370

a value of M around 15–20 is sufficient to achieve the “flat regions” of the
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MSE(M) curves over a reasonable range of p and σ2 values. Using values of M

larger than 20 does not give noticeable improvement in MSE. Secondly, it shows

that the FastTrellis algorithm performs quite well when the underlying data

is generated with p close to 1 and σ2 ≤ 1.375

Other model order selection methods may be employed to choose M . The fit

can be produced for a range of different values of M and the one that provides

the smallest residual sum of squares can be selected. A classical parameter

selection method such as leave-out-one cross-validation can also be applied. Use

of information criteria such as AIC/BIC will require modification in the setup380

because the M slope values are already specified in the current model; they are

not estimated as part of the function-fitting algorithm.

6. Applications

6.1. Presidential Approval Ratings

United States presidential job approval ratings have been published by var-385

ious agencies over the years. These ratings are usually quoted as percentage

values that are computed from the results of opinion polls administered to a

sample of the country’s population. An analysis of the approval ratings for

President George W. Bush is presented by Ratkovic and Eng [22]. The result

of applying the MAPSlope algorithm to a snippet from the same dataset is390

shown in Fig. B.6. A sudden transition in the dataset correlates with the 9/11

terrorist attack.

The raw data is assumed to be piecewise constant, which implies that the

running-sum over this plot gives a piecewise linear curve. This noisy piecewise

linear data can be interpreted as a “cumulative approval score” plotted as a395

function of time. For comparison, results from fitting a fourth order polyno-

mial and a 3-point 1st order polynomial LOWESS filter [23] are also shown
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Table 1: Numerical evaluation of MAPSlope for Bush’s approval ratings

Polynomial Lowess FastTrellis Smooth Optimization

Squared residual 37.61 7.8 5.13 9.84

Average # breaks - - 4 3.63

Residual sum squared values are calculated with respect to the raw data. Note that
the average number of breakpoints is similar for both the FastTrellis and smooth
optimization methods but the residual is smaller with the former. The polynomial
fit is of order 4, whereas the LOWESS smoother uses a sliding window of 3 samples.

in Fig. B.6. Observe that close to the breakpoint the absolute residual error

from the MAPSlope algorithm is the lowest. Also, MAPSlope-FastTrellis

detects a change point immediately following the 9/9–11 polling period. A sim-400

ilar result is obtained in [22] using a non-parametric segmented spline fitting

method. Additional numerical evaluation is presented in Table 1. MAPSlope

was run 1000 times with different initial guesses for the parameter values; σ2

was drawn from U([0.05, 0.15]) and p was drawn randomly from U([0.88, 0.93]) A

maximum limit of 6 alternating maximization iterations was used with M = 15405

slope quantization levels. The smooth optimization algorithm was run with

α = 10−3. Since there is no “ground truth” answer to the fitting problem in

this application, a judgment is made using the residual squared error from the

data. MAPSlope with the trellis dynamic program gives the lowest error as

seen from Table 1.410

[Figure 6 about here.]

6.2. Interest Rates

Markov switching models have been used in the past to unravel piecewise

constant trends in interest rate datasets. Hamilton [14] uses a 2-state Markov

chain to model an economy that switches between fast and slow growth cycles.415

As an extension, Garcia and Perron [13] use a 3-state Markov switching model

to analyze inflation adjusted quarterly interest rate data for the United States

between 1961 to 1986. Assuming that this data follows a first-order Markov
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Table 2: Numerical evaluation of MAPSlope for the interest rate data

Bai-Perron FastTrellis Smooth Optimization

MSE (Eq. (9)) 0 0.64 1.59

Squared residual 4.32 4.74 5.37

Average # breaks 3 3 6.98

The MSE values are obtained according to (9) by using the Bai-Perron
fit as the ground truth. Residual sum squared values are calculated with
respect to the raw data. Note that the average number of breakpoints is
quite high in the smooth optimization method because the quantization
step often leads to a sequence of small jumps.

property, the MAPSlope algorithm provides an easy generalization while pro-

viding a tractable algorithm for a moderate number of quantized interest rate420

levels.

The result of applying the MAPSlope algorithm to the dataset presented

in [16] is shown in Fig. B.7. As in [16], it is assumed that this data is piecewise

constant, with occasional changes in interest rate. The raw data is integrated to

obtain a cumulative interest rate plot as a function of time. This plot is assumed425

to be piecewise linear and MAP estimates of the slope values are obtained.

Initial parameter values are guessed from data; p is chosen close to 0.97 with

the anticipation of around three regimes in the raw data vector of length 100,

whereas the initial σ2 is estimated from the sample variance after appropriate

detrending. The slope values are quantized to 15 levels (which gives a resolution430

of about 0.067 on the unit interval).

Fig. B.7 also shows results obtained from the Bai-Perron algorithm1 for

comparison. The output of MAPSlope-FastTrellis agrees quite well with

the Bai-Perron method as seen from the plot of absolute difference. Additional

numerical evaluation results are shown in Table 2. Both FastTrellis and435

smooth optimization algorithms were simulated 1000 times with different initial

1Code available online at
http://rss.acs.unt.edu/Rdoc/library/strucchange/html/RealInt.html,
accessed Wed, Jan 23, 2013.
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guesses for (σ2, p) with σ2 drawn randomly from U([0.2, 2]) and p drawn from

U([0.90, 0.98]). A maximum iteration limit of MAXIT = 6 was used. For the

smooth optimization algorithm, a sequential quadratic program [26] was used,

followed by quantization to the discrete set of slopes. An initial guess of 0.5440

was used for all the N slopes. The smooth optimization algorithm was run with

α = 10−3. It was seen that MAPSlope converged to a local stationary point

(σ2, p) = (0.12, 0.97) in 3–4 iterations when using FastTrellis but did not

converge to a stable parameter value when the smooth optimization method

was used. This is because the latter is not guaranteed to produce the optimal445

slope sequence, causing the hypotheses of Theorem 1 to be violated.

[Figure 7 about here.]

6.3. Shear Wave Elastography

Shear wave elastography is a medical imaging modality which aims at recon-

structing tissue stiffness by tracking the propagation of a transverse mechanical450

wave in a region of interest. Since this wave travels faster in a stiffer medium,

wave velocity maps can be used to distinguish cancerous tumors from healthy

tissue which is typically softer than the tumor. Shear waves can be set up and

imaged in a variety of ways; an overview of various techniques can be found in

[38, 39]. The present section focuses on the analysis of experimental data from455

ultrasound electrode vibration elastography (EVE) [19, 42]

Radiofrequency tumor ablation procedures make use of a radiofrequency

electrode inserted into the tumor to ablate cancerous cells. In EVE, the RF

electrode is vibrated using an external actuator to set up a shear wave pulse

in the surrounding tissue. Snapshots of this wave pulse are obtained using460

an ultrasound scanner operating at sufficiently high frame rate. Pixel level

displacements are estimated as a function of time using the ultrasound echo

data [37], which is then used to estimate the time of arrival of the shear wave
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pulse as a function of the distance from the ablation electrode. A cross-sectional

view of the experimental setup is shown in Fig. B.8.465

[Figure 8 about here.]

The location of this wave pulse is tracked along lines of constant depth to

obtain a time-of-arrival plot. The slope of this plot of arrival time versus spatial

location gives an estimate of the “slowness” of the shear wave pulse. Slowness

is defined as the reciprocal of the wave speed, a term which has been used in470

the seismology literature [40] and has also been previously used in shear wave

elastography studies [41]. The slowness of this shear wave pulse is related to

the stiffness of the medium and hence a pictorial map of the slowness estimates

can be used to locate stiff regions that may not be easily distinguishable on a

traditional grayscale ultrasound scan (B-mode scan).475

[Figure 9 about here.]

The dataset is acquired on a gelatin based tissue-mimicking (TM) phan-

tom that consists of regions with three different stiffnesses. Since this time-of-

arrival data is quite noisy, direct differentiation to obtain slopes is useless. The

shear wave pulse propagation can be modeled as having constant speed in each480

medium which abruptly changes when the wave crosses an interface. Therefore,

each noisy data vector is amenable to being processed using the MAPSlope-

FastTrellis piecewise linear fitting algorithm. The parameters used for pro-

ducing these images were M = 15 with an initial guess of θ = (σ2, p) = (1, 0.95).

In order to speed up processing time, the alternating maximization method was485

applied only at 4 different depths. Only FastTrellis was used at the remaining

depths using the most recent parameter values obtained from MAPSlope.

Results of the complete procedure are shown alongside a B-mode ultrasound

image in Fig. B.9. Note that the three regions of different stiffnesses are visible in
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the B-mode scan in Fig. B.9(a); this is done on purpose by altering the acoustic490

echogenicity of the TM material used. As mentioned previously, these stiffness

variations are not easily visible in B-mode scans of real tissue. The slowness map

of a shear wave pulse tracked in the same imaging plane is shown in Fig. B.9(b).

There is good correlation between the boundary of the stiff ellipsoidal region

The small irregular area on the left of the ellipsoid which has an intermediate495

stiffness is also visible in the slowness map. Similar visualization is possible

through the shear wave velocity map in Fig. B.9(c). Additionally, a LOWESS

filtered image is shown in Fig. B.9(d). This is similar to the LOWESS filter

used in the application in Section 6.1, but uses a local quadratic model (instead

of linear) with a sliding window of 15 samples. This kind of “least-squares500

smoothed” slope estimation is common in shear wave imaging literature [42].

It can be seen that the boundary details are sharper when the MAPSlope

algorithm is used.

Numerical results obtained with three regions of interest (ROI), each of size

1 cm × 2 cm, fixed in the slowness and shear wave velocity maps are shown in

Table 3. Standard image quality assessment metrics from the ultrasound elas-

tography literature are used for this study [43]; Table 4 shows these evaluation

metrics. For each region, the signal to noise ratio (SNR) is defined as:

SNR =
µ

σ

where µ and σ respectively denote the mean and the standard deviation values

calculated over the ROI. The contrast (C) between a pair of regions is defined

as:

C =
µ1

µ2

where the subscripts indicate the two different ROIs. Similarly, the contrast to
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Table 3: Slowness and Stiffness estimates

Stiff Intermediate Soft

Slowness (s/m) 0.356± 0.1 0.537± 0.11 0.859± 0.18

Velocity (m/s) 3.09± 0.9 2.03± 0.35 1.21± 0.29

SNR (velocity) 12.6± 3.7 17.6± 3.4 12.7± 1.9

E (kPa) 30.4± 22 11.5± 3.8 4.86± 2.9

Values of shear wave slowness, shear wave velocity and
Young’s modulus for the three different regions in the exper-
imental phantom obtained from the MAPSlope algorithm
are indicated.

Table 4: Image quality metrics

Stiff/Inter. Inter./Soft Stiff/Soft

C 3.6± 0.77 4.57± 0.72 8.17± 0.45

CNR 10.3± 6.4 18.1± 4 21.1 ± 6.6

Contrast (C), signal-to-noise ratios (SNR) and
contrast-to-noise ratios (CNR) (in dB) obtained
from shear wave velocity estimates for three
pairs of regions are shown. See text for defi-
nitions of these quantities. The standard devia-
tions are calculated from the dB values obtained
over each ROI from individual datasets.

noise ratio (CNR) is defined as [44]:

CNR =
2(µ1 − µ2)

2

σ2
1 + σ2

2

.

Observe from Table 3 that the SNR values calculated from the shear wave

velocity maps are around 10 dB in all three regions of the phantom, which is505

quite high given the noise levels of raw ultrasound echo data. It is worth noting

in Table 4 that the best contrast and contrast-to-noise ratios are obtained for

the pair of regions that differ the most in shear stiffness.

7. Conclusion

This paper presented the MAPSlope method for estimating slopes from510

noisy piecewise linear data which applies techniques from Bayesian estimation.

An alternating maximization routine was presented for estimating unknown
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model parameters, and its convergence properties were analyzed theoretically.

Further, MSE performance of this algorithm was tested using simulated data for

different parameter values. The MSE performance was compared with suitable515

upper and lower bounds, and it was shown that the error was only slightly

worse than an oracle lower bound. Experimental evaluation was carried out

on three different datasets from political science, finance and medical imaging,

demonstrating the practical significance of this algorithm. A major strength of

theMAPSlope approach is that it directly estimates the slopes and breakpoints520

(rather than inferring them from curve fits) and so more directly optimizes the

parameters that may be of physical interest.

Appendix A. Derivation of EM Iterations

The complete data likelihood function is given by

p(x1:N , s1:N |θ) =

N∏

i=1

p(xi|s1:N , θ)

N∏

k=2

p(sk|sk−1, θ)

=
∏

i

f


xi;

i∑

j=1

sj , σ
2


∏

k

[
p χ{0}(sk−sk−1) +

1−p

M−1
χc
{0}(sk−sk−1)

]

where f(x;µ, σ2) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
is the univariate Gaussian probability525

density function parametrized by its mean and variance.
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Next, the auxiliary function for EM iterations is constructed as follows:

Q(θ, θ′) =
∑

s1:N∈SN

[log p(x1:N , s1:N |θ)] p(x1:N , s1:N |θ
′)

=
∑

s1:N∈SN

∑

i

log f


xi,

i∑

j=1

sj , σ
2


 p(x1:N , s1:N |θ

′)

+
∑

s1:N∈SN

∑

k

log

[
p χ{0}(sk − sk−1) +

1− p

M − 1
χc
{0}(sk − sk−1)

]

·p(x1:N , s1:N |θ
′) (A.1)

=: T1 + T2

where SN is the set of all valid slope value sequences of length N , and the

primes denote old values of the parameters from the previous iteration.

The two terms can now be independently optimized due to decoupling of530

parameters σ2 and p.

Estimating σ2. Setting the gradient of T1 with respect to σ2 to zero yields

σ2 =

N∑
n=1

∑
s1:n∈Sn

(
xn −

∑n
j=1 sj

)2

p(x1:N , s1:n|θ
′)

Np(x1:N |θ′)

The constraint σ2 > 0 is automatically met since all the terms in the expression

on the right hand side are positive.

Estimating p. Setting the gradient of T2 with respect to p to zero yields

p =

N∑
k=2

∑
i=j

p(x1:N , Sk−1 = i, Sk = j|θ′)

(N − 1)p(x1:N |θ′)
.
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The constraint 0 < p < 1 is automatically met since all the quantities in the

expression on the right hand side of this equation are positive and

∑

i=j

p(x1:N , Sk−1 = i, Sk = j|θ′) ≤
∑

i,j

p(x1:N , Sk−1 = i, Sk = j|θ′) = p(x1:N |θ
′).

Appendix B. Convergence of Alternating Maximization

Appendix B.1. Proof of Theorem 2535

It suffices to prove the two inequalities for log p(x1:N , s1:N |θ) because log

is monotonic increasing. The first inequality follows from the fact that Fast-

Trellis solves the maximization problem

s∗1:N = argmax
s1:N

log p(x1:N , s1:N |θ).

The second inequality can be obtained maximizing log p(x1:N , s∗1:N |θ) as a func-

tion of θ. Setting the derivative with respect to σ to zero yields,

−
N

σ
+

1

σ3

N∑

i=1


xi −

i∑

j=1

s∗j




2

= 0

which gives

σ2 =
1

N

N∑

i=1


xi −

i∑

j=1

s∗j




2

.

Also note that the second derivative with respect to σ is negative implying that

this is in fact a maximum.

Next, setting the derivative with respect to p to zero yields,

∑

k: sk=sk−1

2≤k≤N

1

p
=

∑

k: sk 6=sk−1

2≤k≤N

1

1− p
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which gives

p =
1

N − 1

N∑

k=2

χ{0}(s
∗
k − s∗k−1).

Again, note that the second derivative with respect to p is negative which implies

that this is a maximizer.

Appendix B.2. Proof of Corollary 3540

Assuming there exists δ > 0 such that σ ≥ δ, the following upper bound is

obtained:

log p(x1:N , s1:N |θ) ≤ −
N

2
log(2πδ2) + (N−1)max

(
log p, log

1−p

M−1

)

for all s1:N and θ. Since every bounded non-decreasing sequence has a limit

point by the monotone convergence theorem [45, Theorem 3.14], it follows from

Theorem 1 that the alternating maximization iterations must converge.
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Figure B.1: A pictorial representation of different random variables involved in the Markov
model for piecewise linear data. Solid arrows indicate conditional dependence. A dotted arrow
indicates redundant dependency link. For instance, Z4 depends on S1, S2, S3 through Z3.
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Figure B.2: A representative diagram of a trellis structure used for finding the MAP optimal
slope sequence. This trellis is shown with slope values quantized into three bins and a data
vector length of 4.
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Input: x1:N : noisy data vector of length N
M : number of slope quantization levels
σ2: Gaussian noise variance
p: probability of staying in the same slope value

Output: s∗1:N : MAP slope sequence
L∗: log-likelihood for MAP slope sequence

1: procedure FastTrellis(x1:N ,M, σ2, p)
2: I(0, 0)← 0
3: for n = 1 to N do

4: for k = 0 to (M − 1)n do

5: if n == 1 then

6: I(1, k)← − 1
2σ2

(
x1 −

k
M−1

)2

+ log 1
M

7: Π(1, k)← [0, k].
8: else

9: I(n, k)←maxj [I(n−1, j)+branch reward of (n−1, j) to (n, k)]

10: ĵ ← argmaxj [I(n−1, j)+branch reward of (n−1, j) to (n, k)]

11: Π(n, k)← Append(Π(n− 1, ĵ), k)
12: end if

13: end for

14: end for

15: L∗ ← maxk I(N, k)
16: s∗1:N ← Π(N, argmaxk I(N, k))
17: return (s∗1:N , L∗)
18: end procedure

Figure B.3: Fast dynamic program for searching an optimal route through a linearly growing
trellis (like the one shown in Fig. B.2).
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Input: x1:N : noisy data vector of length N
M : number of slope quantization levels
σ2: initial guess for the Gaussian noise variance
p: guess probability of staying in the same slope value
τ : threshold for likelihood value convergence test
MAXIT: maximum number of iteration

Output: s∗1:N : MAP slope sequence
σ∗2: estimated noise variance
p∗: estimated value of p

1: procedure MAPSlope(x1:N ,M, σ2, p, τ,MAXIT)
2: loop← 1
3: L← −∞
4: CONVERGED← False
5: repeat

6: if using FastTrellis then

7: (s∗1:N , L∗)←FastTrellis(x1:N ,M, σ2, p)
8: else if using another optimization routine then

9: s∗1:N ← argmax
s1:N

log p(x1:N , s1:N |σ
2, p)

10: L∗ ← log p(x1:N , s∗1:N |σ
2, p)

11: end if

12: σ∗2 ← 1
N

∑N
n=1

(
xn −

∑i
j=1 s

∗
j

)2

13: p∗ ← 1
N−1

∑N−1
n=1 χ{0}(s

∗
n+1 − s∗n)

14: loop← loop + 1
15: if (|L∗ − L| < τ) ∨ (loop > MAXIT) then

16: CONVERGED← True
17: end if

18: p← p∗, σ2 ← σ∗2, L← L∗

19: until ¬CONVERGED
20: return (s∗1:N , σ∗2, p∗)
21: end procedure

Figure B.4: MAPSlope algorithm for maximum a posteriori slope estimation in piecewise
linear functions with alternating maximization parameter estimation.
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(a) Varying noise variance (b) Varying jump probability

Figure B.5: MSE of the FastTrellis algorithm on randomly generated simulated data with
(a) different noise variances and (b) slope change probabilities.
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Figure B.6: Fits to Presidential approval data for President George W. Bush around 9/11.
Absolute residuals obtained fromMAPSlope-FastTrellis (solid line), a 4th order polynomial
fit (dashed line) and a 3-point 1st order LOWESS fit (dash-dotted line) are also shown.
Observe that the 4th order polynomial fit has a large error at the breakpoint. The 3-point
LOWESS smoother performs slightly better than the näive polynomial fit, but still fails to
capture the sharp jump.
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Figure B.7: Piecewise constant estimates of quarterly interest rates, data obtained from the
paper by Bai and Perron [16]. The MAPSlope-FastTrellis fit was obtained using (σ2, p) =
(0.12, 0.97) which was found to be a local convergence point of the alternating maximization
scheme.
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Figure B.8: Cross section view of the experimental setup showing a needle that sets up a
shear wave pulse in the underlying tissue mimicking gelatin material.
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Figure B.9: Results from shear wave tracking using the MAPSlope algorithm. (a) Ultrasound
B-mode image of the phantom, (b) slowness map generated by applying the MAPSlope

algorithm to denoise the arrival time data and obtain MAP slope estimates. Wave velocities
are shown in (c) by calculating the reciprocal of the slowness values. The velocity values
estimated using a 2nd order LOWESS filter with a 15 sample sliding window is are shown in
(d).
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