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Motivation

Bill Gates’s graph of the year (The Washington Post, Dec. 2013)
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Motivation

Hepatocellular carcinoma (HCC) is a common form of cancer with a
very high mortality index of 95% and almost 750k deaths reported
worldwide in 2012.

It has a higher incidence in the less developed regions of the world
with over 80% of the cases reported in Asia and Africa.

Surgery may be used to remove a lobe of the liver. Success in such
procedures depends on good liver function.

HCC isolated to liver

Good liver function Poor liver function

Transplant if

meet criteria

Supportive care

or clinical trial

Resection

of a lobe

Small tumor

< 5 cm

Ablation Embolization

Surgery candidate?

Yes No

Yes No

*Adapted from Ferri’s

Clinical Advisor 2016
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Motivation

Ablation using RF electrode or microwave antenna is a minimally
invasive procedure for treating tumors.
This procedure does not require prolonged hospitalization and has
lower morbidity as compared to surgery.
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Motivation

In order to prevent recurrence, it is crucial to design the ablation
therapy so that the right volume of tissue is ablated to include a
safety margin around the tumor.

CT or MRI scans are typically performed before and after the
procedure.

B-mode ultrasound is currently used for guiding the ablation needle
into the tumor.

The goal of this dissertation is to develop ultrasound-based

stiffness estimation algorithms for liver ablation monitoring.

This will be a significant advancement because ultrasound imaging is
potentially

faster than CT/MRI,
safer than ionizing radiation,
inexpensive, portable and electromagnetically compatible.
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Electrode Vibration Shear Wave Elastography

Elastography is a medical imaging method for mapping mechanical
properties of tissue (such as displacement, strain, stiffness modulus,
or other elasticity parameters).
An elastography system has three main components:
(a) a method for producing displacements
(b) a method for measuring displacements
(c) a method for postprocessing to infer elastic properties.

In electrode vibration elastography:
(a) a shear wave pulse is produced by vibrating the ablation needle
(b) displacements are measured using ultrasound images (cross-correlation)
(c) shear wave velocity is inferred by tracking the wave through the

ultrasound image movie.

A shear wave is a transverse mechanical wave; particles move
perpendicular to the direction of travel of the wave.

The wave travels faster in stiffer tissue than softer tissue, and hence
shear wave velocity information can be used to distinguish treated
tissue from healthy tissue.
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Electrode Vibration Shear Wave Elastography

Actuator

controller

Phantom

Ultrasound transducer

Ultrasound

scanner

Image plane

Actuator

Needle

Block diagram of the data acquisition system.
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Electrode Vibration Shear Wave Elastography
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Electrode Vibration Shear Wave Elastography

The B-mode contrast seen in the phantom is artificial. In reality, stiffness
variations are not so easily visible on B-mode.
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Data Acquisition System

The data acquisition system consists of a research ultrasound scanner
with a programmable imaging sequence that runs in synchronization
with the actuator motion.

A linear array transducer is used for imaging at a center frequency of
around 4 to 9 MHz.

The acquisition routines are written in C++ using the manufacturers’
APIs, and a user interface is designed using Qt.

Phantom construction: oil-in-gelatin dispersion (Madsen et al.)

Phantom stiffnesses: 10 to 40 kPa (measured using an ‘ELF’
mechanical tester)

Actuator (Physik Instrumente), generates 100 micron pulses, about
30 ms wide.
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Electrode Vibration Shear Wave Elastography

NeedlePerturbation

Tissue mimicking

material

Shear wave pulse

Schematic showing essential components of an electrode vibration
elastography setup.
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Electrode Vibration Shear Wave Elastography

Ultrasound

transducer

Ultrasound data frame 1
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Electrode Vibration Shear Wave Elastography

Ultrasound

transducer

Ultrasound data frame 2
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Electrode Vibration Shear Wave Elastography

Ultrasound

transducer

Ultrasound data frame 3
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Electrode Vibration Shear Wave Elastography

Ultrasound

transducer

Ultrasound data frame 4
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Electrode Vibration Shear Wave Elastography

Ultrasound

transducer

. . . Ultrasound data frame n
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Electrode Vibration Shear Wave Elastography

Distance from needle

Wave arrival time (Ideal)

soft

stiff

moderately stiff

Needle

y0

y
−3

y3

wave speed = 1
slope

Time of arrival plots are obtained by tracking the wave pulse at each
depth.
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Specific Aims

Aim 1

Implement a high frame rate plane wave imaging sequence for electrode
vibration elastography.

Aim 2

Develop and analyze shear wave velocity reconstruction algorithms for 2D
electrode vibration elastography.

Aim 3

Develop 3D reconstruction and visualization algorithms using 2D shear
wave velocity information.

Aim 4

Demonstrate the use of shear wave tracking algorithms using experimental
data.
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Aim 1

Implement a high frame rate plane wave imaging sequence for electrode
vibration elastography.
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Plane Wave Imaging

Many snapshots of the imaging plane must be acquired at a high
frame rate to track a shear wave pulse.

Traditionally, sequentially focussed ultrasound has been used which
provides very low frame rates.

Plane wave insonification has gained popularity because it can provide
very high frame rates, limited only by the speed of sound (∼10k
frames/s at 7.5 cm depth).

The entire imaging plane is insonified hence a full dataset can be
acquired with a single shear wave pulse.

However, this results in peculiar “ghost displacement” artifacts in
shear wave imaging due to poor lateral resolution [Montaldo et al.
IEEE UFFC 2009].
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Plane Wave Imaging
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Angular Compounding

Lateral resolution and SNR can be improved by compounding
multiple angular plane wave insonifications.

Each angular transmit is beamformed using a delay-sum technique by
coherently summing up the echo signals.

This requires calculation of the path length and time delays for each
pixel in the image plane.

The beamformed frames for different angles are averaged to produce
a compounded plane wave image.

This reduces effective frame rate by a factor equal to the number of
angles used.
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Angular Compounding

α

n dx

z
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Geometrical path length calculations used for delay-sum beamforming.
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Angular Compounding
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Effect of different number of angles used for plane wave compounding.
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Angular Compounding
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Angular Compounding
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Experimental Results

B-mode image (left) and maximum displacement image (right)
generated from angular compounded plane wave data. Note the
reduction in haze artifact in the B-mode image.
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Experimental Results

Shear wave arrival time and velocity images generated from angular
compounded plane wave data.
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Summary

A method for high frame rate acquisition using plane wave
insonification was designed for electrode vibration elastography.

A prototype was implemented using a research ultrasound scanner.

Angular compounding was used to improve lateral resolution and
SNR.

With a few angular insonifications and delay-sum beamforming, a
shear wave pulse can be successfully tracked over a wide field of view.
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Aim 2

Develop and analyze shear wave velocity reconstruction algorithms for 2D
electrode vibration shear wave elastography.
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Recall: Noisy Time of Arrival Data

Distance from needle

Wave arrival time (Ideal)

soft

stiff

moderately stiff

Needle

y0

y
−3

y3

wave speed = 1
slope

The goal of a filtering algorithm is to estimate local slope values from
noisy data.
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Hidden Markov Model

The piecewise linear function has unknown number and locations of
changepoints.

We model the noisy time of arrival data as an hidden Markov model
(HMM).

An HMM is a stochastic model that consists of a system that evolves
“behind the curtain” according to a certain rule, and the observer
sees a distorted version of the output of this system.

More precisely, the model has a “state transition function” and an
“observation function.”
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Hidden Markov Model

TTP (Zn)

Lateral location (n)n

Zn

n− 1

Zn−1

Slope Sn = Sn−1

with probability p

Xn = Zn + wn

wn ∼ N(0, σ2)

(Sn ∼ U([0, 1]), w.p. 1− p)

Random variables used for defining the HMM.
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Hidden Markov Model

Our goals are twofold now:

Select sensible values for model parameters (p, σ2).

Find the most sensible values for slopes S1:N using data X1:N .

We propose two different algorithms to estimate the slope values:

Particle filter, operating on a continuous state space.

MAPSlope-FastTrellis, operating on a discretized state space.
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Particle Filter

Particle filtering is a Monte-Carlo technique for smoothing noisy data
by estimating the posterior density p(Zn|X0:n).
The density is approximated via a large number of “particles” in the
state space: p(Zn|X0:n) =

∑Ns

i=1 ω
i
nδ(Zn − Z i

n).
Knowing p(Zn|X0:n), we can calculate various state estimators
(maximum likelihood, mean, median, . . . )

Particles

p(Zn|X1:n)

p(Zn+1|X1:n+1)

Weights ωi
n, i = 1, . . . , Ns

Weights ωi
n+1, i = 1, . . . , Ns

Resampling

A
lg
or
it
h
m

p
ro
gr
es
s
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Simulation Results
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Synthetic piecewise linear data with slopes between [0, 1] and additive
Gaussian noise was filtered with different algorithms. Reconstruction
MSE is shown for p = 0.85 at different noise levels.

Atul Ingle (UW-Madison) Shear Wave Tracking 29 / 69



Simulation Results

−2 −1.5 −1 −0.5 0
0

0.02

0.04

0.06

log(noise σ)

M
S

E
 s

lo
pe

 

 pf
poly
movav
sg2
sg3
raw

Synthetic piecewise linear data with slopes between [0, 1] and additive
Gaussian noise was filtered with different algorithms. Reconstruction
MSE is shown for p = 0.95 at different noise levels.
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Finite Element Simulation Results

Shear wave velocity reconstruction profiles using (a) particle filter (b)
moving average (c) 2nd order Savitzky-Golay and (d) 3rd order
Savitzky-Golay filters [Ingle, Varghese 2015 (under review)]
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Finite Element Simulation MSE Results
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Mean squared error in slope values estimated using the particle filter
compared to other standard slope estimation methods.
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Experimental Results
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(b) Particle filter

B-mode image of the phantom with corresponding SWV map
reconstructed using the particle filtering algorithm [Ingle, Varghese,
IEEE ISBI 2013]
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Experimental Results

Shear wave velocity

ROI
SWV (m/s)

Particle Filter Direct Measurement

Inclusion 3.8± 2.2 2.8± 1.1

Partially Ablated 2.0± 0.2 2.3± 0.8

Background 1.3± 0.2 1.3± 0.4

Inclusion areas in cm
2

Method Phantom-1 Phantom-2

Particle filter 4.45± 0.15 4.13± 0.18

Least squares 4.11± 0.19 4.01± 0.14

B-Mode (truth) 4.68± 0.14 4.47± 0.11
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FastTrellis

A faster algorithm than particle filtering can be designed by
discretizing the state space (slope values).

Let S = {0, 1
M−1 ,

2
M−1 , . . . , 1} the set of M quantized slope values,

|S| = M.

Assuming p, σ2 are known, a maximum a posteriori (MAP) estimate
of the slope sequence can be obtained as

(ŝ1, . . . , ŝN) = argmax
(s1,...,sN)∈SN

log p(Z1, · · · ,ZN |X1, · · · ,XN)

= argmax
(s1,...,sN)∈SN

N∑

i=1

[log p(zi |zi−1, zi−2) + log p(xi |zi )] .

Combinatorially, there are MN possible slope sequences to check.

MATLAB implemenation runs in O(M2N3) time using dynamic
programming.

Atul Ingle (UW-Madison) Shear Wave Tracking 34 / 69



FastTrellis

A faster algorithm than particle filtering can be designed by
discretizing the state space (slope values).

Let S = {0, 1
M−1 ,

2
M−1 , . . . , 1} the set of M quantized slope values,

|S| = M.

Assuming p, σ2 are known, a maximum a posteriori (MAP) estimate
of the slope sequence can be obtained as
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FastTrellis

n = 0 n = 1 n = 2 n = 3
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Depth (n) →

State
(k)
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A trellis structure shown up to a depth of 3, with 3 distinct slope
values.

A dynamic program finds the optimal path on this trellis to maximize
the posterior density

∑N
i=1 [log p(zi |zi−1, zi−2) + log p(xi |zi )] .

Atul Ingle (UW-Madison) Shear Wave Tracking 35 / 69



MAPSlope

We propose an automatic method to choose (p, σ2) using an
alternating-maximization algorithm MAPSlope [Ingle et al., Asilomar
2014/Sig. Proc. 2015].

MAPSlope Algorithm

1 Start with an initial guess for (p, σ2).
2 Loop

1 Run FastTrellis(p, σ2) to estimate slope sequence.

2 Estimate new p∗ =
#times slope stays constant

#data points
3 Estimate new σ∗2 = var(noisy data− current fit)
4 p ← p∗, σ2 ← σ∗2

3 Stop if some convergence criterion is met.
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Experimental Results
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B-mode image of the phantom inclusion.
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Experimental Results

Corresponding shear wave velocity image.
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Experimental Results

Slowness and Stiffness estimates

Stiff Intermediate Soft

Velocity (m/s) 3.09± 0.9 2.03± 0.35 1.21± 0.29

SNR dB (SWV) 12.6± 3.7 17.6± 3.4 12.7± 1.9

Values of shear wave slowness, shear wave velocity and Young’s modulus
for the three different regions in the experimental phantom obtained from
the MAPSlope algorithm are indicated.
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Summary

A stochastic model for noisy arrival time (piecewise linear) data was
developed.

The particle filter algorithm provides better mean squared
reconstruction error than standard slope estimation algorithms (such
as moving average or Savitzky-Golay).

A faster algorithm that uses dynamic programming and has provable
convergence properties was also developed.

Shear wave velocity measurements from these algorithms also agreed
with direct mechanical measurement.
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Aim 3

Develop 3D reconstruction and visualization algorithms using 2D shear
wave velocity information.
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Sheaf Acquisition

2D shear wave velocity reconstruction algorithms can be extended to
3D by acquiring multiple planes of data in a sheaf geometry.

A sheaf is a collection of planes that intersect in a line.

With the knowledge of shear wave velocity values on every plane in
the sheaf, shear wave velocity values are estimated over each
transverse “C-plane”.

Shear wave velocity values are reconstructed on a fine grid on each
C-plane.

A stack of these C-planes can be used to generate a 3D visualization.
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Sheaf Acquisition

Transverse plane
(C-plane)

Imaging planes

lateral (x)

axial (z)

elevation (y)

Common axis (collinear
with the ablation needle)

Diagram showing the orientation of the image planes and a C-plane in
a sheaf.
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3D Reconstruction

Given a set of (noisy) data points on each transverse plane, we would
like to infer the shear wave velocity values on a grid and display it as
a volume.

The reconstruction should satisfy these intuitive requirements:
1 It must “agree” with the known data points at the scattered locations,

i.e. the known data points should be close to the interpolation from
the nearest grid points.

2 It should look “pleasing” i.e. smoothness.

This may be ill-posed because the number of data points is often
much smaller than the number of grid points i.e. more unknowns
than known data points.
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Requirement 1: Interpolation

V

G11

G12 G21

G22

x1 x2

y2

y1

y

x

We use bilinear interpolation so that each data point (V ) is a linear
combination of the (unknown) function values (G ) at the eight
neighbors on the grid.
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Requirement 1: Interpolation

V

G11

G12 G21

G22

x1 x2

y2

y1

y

x

Value at red dot ≡ linear combination involving 4 grid neighbors
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Requirement 2: Smoothness

We enforce smoothness by constraining the Laplacian calculated on
the grid through finite differencing.

G(m,n)

G(m,n + 1)

G(m,n− 1)

G(m− 1, n)

G(m + 1, n)

lateral

elevation
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G(m,n)

G(m,n + 1)

G(m,n− 1)

G(m− 1, n)

G(m + 1, n)

lateral

elevation

d2G
dx2

(m, n) ≈ 1
2(G (m + 1, n)− G (m − 1, n) + 2G (m, n))

d2G
dy2 (m, n) ≈ 1

2(G (m, n + 1)− G (m, n − 1) + 2G (m, n))

∇2G (m, n) = d2G
dx2

(m, n) + d2G
dy2 (m, n)
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Requirement 2: Smoothness

We enforce smoothness by constraining the Laplacian calculated on
the grid through finite differencing.

G(m,n)

G(m,n + 1)

G(m,n− 1)

G(m− 1, n)

G(m + 1, n)

lateral

elevation

Laplacian ≡ linear combination involving 5 grid points
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Penalized Least Squares Formulation

Let

g denote the vector of unknown function values on the grid

v denote the vector of known data values at the scattered points

Since all requirements are linear combinations of the grid values, we can
represent them in matrix form. Let

M be the interpolant matrix

D be the finite differencing Laplacian matrix.

By choice of g
minimize ||v −Mg||2

subject to
||Dg||2 ≤ c

where || · || denotes the 2-norm (square-root-of-sum-of-squares) and c is
some user specified constant.
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Penalized Least Squares Formulation

Using a Lagrange multiplier λ the problem is reformulated as:
minimize

g
||v −Mg||2 + λ||Dg||2

This has a closed form solution: g = (MTM+ λDTD)−1MTv.

Here the Lagrange multiplier λ controls the amount of smoothing:
smaller λ means less smoothing and vice versa.

This smoothing parameter can be chosen in an objective manner
using the method of leave-one-out crossvalidation.

The matrix inverse is not calculated explicitly.

This was implemented in C++ using a sparse-QR decomposition
routine.
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C-Plane Results
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Two transverse plane reconstructions shown over a plane at a depth
of 3 cm. (a) was reconstructed using 4 image planes while (b) was
reconstructed with 6 image planes. There is considerably more
“detail” visible in (b) whereas the reconstruction in (a) is smoother.
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Experimental Results

A 3D-slice view of the reconstruction of the ablation phantom [Ingle,
Varghese, IEEE TMI 2014],[Ingle et al., IEEE EMBC 2014]
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Experimental Results

Shear wave velocity estimates in m/s

4 image planes 16 image planes Direct Measurement

background 0.75± 0.08 0.75± 0.08 0.9± 0.07
irregular region 1.02± 0.02 0.99± 0.02 1.1± 0.05

ellipsoid 1.26± 0.11 1.24± 0.12 1.2± 0.03

The reconstructions were repeated with 4 and 16 image planes. Mean
and standard deviation SWV values were calculated using three
different ROIs.
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Spokewheel Artifact
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Spokewheel artifact causes streaks along the sheaf lines.
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Kernel Smoothing

On each C-plane, the shear wave velocity field can be represented by
a function f : R2 → [0,∞).

Noisy point evaluations are acquired at different locations {ti}
n
i=1:

ui = f (ti ) + ǫi each ti ∈ R
2 is situated along the radial lines.

f is assumed to be a member of a “nice set of functions” with K as
the kernel function.

A function in this set can be expressed as a linear combination:
f̂ (t) =

∑n
i=1 ciK (||t − ti ||).

This formulation suggests that each data point ti imposes a “region
of influence” that varies with its distance from an arbitrary point t.

The two-parameter Matérn kernel is used for getting rid of the spoke
wheel artifact, with the parameters chosen in a data-adaptive manner.
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Matérn Kernel

We use the two parameter Matérn kernel which allows controlling the smoothness
and range of influence of the kernel. [C. E. Rasmussen, 2006].
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Choosing the Matérn Kernel Parameters

Simulated mean squared error (MSE) performance for different values
of Matérn kernel parameters. We choose the one that locally
minimizes the MSE [Ingle, Varghese (in preparation)].
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Results: C-plane Reconstructions
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Kernel smoothing with the right parameters gives good reconstruction
quality and reduces the spokewheel artifact too.
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Results: Volume Estimates
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Full 3D Reconstruction

It is desirable to extend the sheaf reconstruction algorithm to generate
complete three dimensional visualizations of shear wave velocities.

The intermediate step of reconstructing transverse C-planes is an
approximation and is used to make the reconstruction algorithm
computationally tractable.

A commonly used fast method for 3D visualization is nearest neighbor
interpolation which involves assigning the value of the closest data
point to each grid node.

Using a Markov random field model, a computationally tractable
reconstruction algorithm that has better reconstruction quality than
nearest neighbor interpolation is developed.
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Markov Random Field Model

Consider a function defined on the nodes of a 3D grid.

A Markov random field has the property that conditioned on the
function values at the neighboring nodes, the value at any given node
is independent of the values at all other nodes.

Intuitively, this means that the “region of influence” for each node in
the 3D grid consists of its immediate neighbors, forming a “clique”.

The joint density function of the values at all the grid nodes is
expressed as a function of the “potential energy” of the configuration
of the values at the nodes, where higher probabilities are assigned to
configurations with lower potential.

These “clique potentials” can be defined to impose a desirable
structure on the final grid reconstruction.
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Markov Random Field Model
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The clique potential is defined using a 6-neighborhood:
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Markov Random Field Model

The joint density function is defined so that “high energy”
configurations have lower probability, and vice versa.

Denoting the vector of ui ,j ,k values as u, define the density function

p(u) ∝ exp(−
∑

i ,j ,k

V (ui ,j ,k)).

The goal of the reconstruction algorithm is to estimate the mode of
this density function, i.e., the configuration u that maximizes p(u).
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Markov Random Field Model

This maximization is performed using a greedy iterative algorithm
which updates the value ui ,j ,k at each node by using the neighboring
values from the previous iteration.

The iterative scheme can be expressed simply using a linear update:

u(new) = initial condition + Au(prev).

where the matrix A has only 6 non-zero entries in each row.

This iterative scheme is guaranteed to converge which can be proved
using a contraction mapping argument [Ingle, Varghese, Sethares
2015 (under review)].
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Simulated Ellipsoidal Inclusion
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Reconstruction MSE on a simulated ellipsoidal inclusion for different
noise levels compared to nearest neighbors interpolation; Markov
random field algorithm (left), nearest neighbors (right).
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Experimental Results

Signal to noise ratios
ROI Algorithm 4 slices 6 slices 12 slices 16 slices

bkg
MRF 22.65 23.14 21.72 17.78
NNB 21.74 21.87 20.24 16.21

inc
MRF 11.14 11.34 10.72 10.47
NNB 9.03 9.21 8.51 8.22

Signal to noise ratios (SNR) in dB calculated from parallelepiped
shaped ROIs in the background and inclusion. The MRF
reconstruction has a higher SNR in all cases. (MRF=Markov random
field algorithm, NNB=nearest neighbors interpolation, bkg=
background, inc=inclusion).
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Experimental Results
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Markov random field reconstruction appears less blocky and has
higher SNR than nearest neighbor interpolation.
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Summary

A sheaf acquisition method that extends 2D imaging methods to 3D
was developed.

The effect of varying number of imaging planes in the sheaf was also
analyzed.

Approximate reconstruction algorithms that generate 3D visualization
from a stack of C-planes were developed.

A fast full-3D reconstruction algorithm that provides better SNR than
nearest neighbor interpolation was also presented.
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Conclusion

We demonstrated the use of plane wave imaging and angular
compounding for high frame rate tracking in electrode vibration
elastography.

We developed a model-based noise filtering techniques for 2D shear
wave velocity reconstruction that provide better MSE performance
than standard algorithms for calculating derivative from noisy data.

We also developed 3D reconstruction algorithms that can be used for
visualizing the ablated 3D volume by stitching together data from 2D
imaging planes.

These algorithms were compared against standard techniques used in
literature and were shown to provide better image quality metrics
such as SNR.

These algorithms are “general purpose,” in that can be applied to
reconstruct strain, stiffness, temperature maps, coherence maps, or
even for other signal processing applications outside medical imaging.

Atul Ingle (UW-Madison) Shear Wave Tracking 66 / 69



List of Publications

Journals
A. Ingle, T. Varghese, “Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated
Volumes,” IEEE TMI (2014).
A. Ingle, J. Bucklew, W. Sethares, T. Varghese, “Slope Estimation in Noisy Piecewise Linear Functions,” Signal
Processing (2015).
A. Ingle, T. Varghese, “A Kernel Based Inversion Algorithm for 3D Ultrasound Elastography,” (under review).
A. Ingle, T. Varghese, “Ultrasound Based Tracking of Shear Waves using a Particle Filter Denoising Approach,”
(under review).
A. Ingle, T. Varghese, W. Sethares, “Efficient 3D Reconstruction in Ultrasound Elastography via a Sparse
Iteration based on Markov Random Fields” (under review).

Conferences
A Comparison of Model Based and Direct Optimization Based Filtering Algorithms for Shear Wave Velocity
Reconstruction in Ultrasound Electrode Vibration Elastography (ISBI 2013)
C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography (IEEE UFFC
2014)
Stochastic Piecewise Linear Function Fitting with Application to Ultrasound Shear Wave Imaging (IEEE EMBC
2014)
Three Dimensional Shear Wave Elastographic Reconstruction of Ablations (IEEE EMBC 2014)
Piecewise Linear Slope Estimation (Asilomar 2014)

Patents Pending
Rapid Three-Dimensional Elasticity Imaging (US 20140243666A1)
TOTAL3D: Algorithm for Complete 3D Visualization of Structures in Ultrasound Elastography (WARF:
P140237)

Atul Ingle (UW-Madison) Shear Wave Tracking 67 / 69



Acknowledgments

NIH-NCI (for the funding support R01CA112192-S103 and R01CA112192-05/6/7).

Prof. Tomy Varghese for his advice, constant encouragement and trust in my work.

Prof. William Sethares for the numerous wonderful discussions on a variety of
topics.

Profs. John Gubner, Tim Hall and Chris Brace for serving on my committee.

Profs. Jim Zagzebski and Jim Bucklew for discussing ideas.

Prof. Ernie Madsen and Gary Frank for help with phantoms and experiments.

Ultrasound lab members for delightful camaraderie.

Numerous friends I have made during my stay in Madison.

Parents, brother and rest of the family back home for their unconditional love and
support.

Atul Ingle (UW-Madison) Shear Wave Tracking 68 / 69



Thank you!

Questions?
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